Short-Length Raptor Codes for Free-Space Optical Communications

Free-space optical (FSO) links are competitive wireless links offering high data rate, security and low system complexity. Compared to radio-frequency (RF) links, FSO links offer high rates at gigabit-per-second (Gbps) level and relatively low cost. However, atmospheric scintillation and misalignment between optical transmitter and receiver impair data rates of FSO links. Scintillation and misalignment are slow fading processes with a fading interval of 10's ms. Conventional fixed-length channel coding which interleave data blocks are unrealistic to overcome this slow fading due to block length of 10's of megabits. Also, because of the Gbps data rate, data rate adaptation to channel conditions are expensive. In this work, short-length (16 1024) Raptor codes are designed to overcome the slow fading of FSO channels. These Raptor codes are applied at the packet-level with high data rate and low decoding complexity. The Raptor encoder and decoder can be easily implemented in any software or hardware form. The practicality of these Raptor codes is demonstrated by a Raptor encoder and decoder which are implemented in field-programmable gate array (FPGA) and shown to support a 1.22 Gbps encoding and 714 Mbps decoding rate with a 97 mW low power consumption and 26360 gate circuit scale. High-speed transmission at Gbps level is easily satisfied by the same design implemented in an application-specific integrated circuit (ASIC).

[1]  Steve Hranilovic,et al.  Short-Length Raptor Codes for Mobile Free-Space Optical Channels , 2009, 2009 IEEE International Conference on Communications.

[2]  Erich Leitgeb,et al.  High availability of hybrid wireless networks , 2004, SPIE Photonics Europe.

[3]  Steve Hranilovic,et al.  Wireless optical communication systems , 2004 .

[4]  C.C. Davis,et al.  Hybrid free space optical/RF networks for tactical operations , 2004, IEEE MILCOM 2004. Military Communications Conference, 2004..

[5]  L. Andrews,et al.  Laser Beam Propagation Through Random Media , 1998 .

[6]  E. J. Mccartney Optics of the atmosphere , 1976 .

[7]  Robert W. Phillips,et al.  High altitude platform stations for Australia , 2008 .

[8]  H.H. Refai,et al.  Control system analysis for ground/air-to-air laser communications using simulation , 2005, 24th Digital Avionics Systems Conference.

[9]  Hossein Pishro-Nik,et al.  Optimal Hybrid RF-Wireless Optical Communication for Maximum Efficiency and Reliability , 2007, 2007 41st Annual Conference on Information Sciences and Systems.

[10]  Shlomi Arnon,et al.  Optical wireless communication through fog in the presence of pointing errors. , 2003, Applied optics.

[11]  W. Grossman,et al.  Autonomous Searching and Tracking of a River using an UAV , 2007, 2007 American Control Conference.

[12]  S. Arnon,et al.  Performance of an optical wireless communication system as a function of wavelength , 2002, The 22nd Convention on Electrical and Electronics Engineers in Israel, 2002..

[13]  S. Hranilovic,et al.  Outage Capacity Optimization for Free-Space Optical Links With Pointing Errors , 2007, Journal of Lightwave Technology.

[14]  Debbie Kedar,et al.  Urban optical wireless communication networks: the main challenges and possible solutions , 2004, IEEE Communications Magazine.

[15]  Alfonso Ortega,et al.  Attribute Grammar Evolution , 2005, IWINAC.

[16]  A. Biswas,et al.  Deep-Space Optical Communications Downlink Budget from Mars: System Parameters , 2003 .

[17]  Jeffrey B. Carruthers,et al.  Wireless infrared communications , 2003, Proc. IEEE.

[18]  Shlomo Tsach,et al.  Unmanned Aerial Vehicles (UAVs) , 2010 .

[19]  A. Best,et al.  The size distribution of raindrops , 1950 .

[20]  Hennes Henniger,et al.  Evaluation of optical up- and downlinks from high altitude platforms using IM/DD , 2005, SPIE LASE.

[21]  H.G. Ilk,et al.  Design, availability and reliability analysis on an experimental outdoor FSO/RF communication system , 2005, Proceedings of 2005 7th International Conference Transparent Optical Networks, 2005..

[22]  John R. Spletzer,et al.  Hybrid Free-Space Optics/Radio Frequency (FSO/RF) Networks for Mobile Robot Teams , 2005 .

[23]  Shu Lin,et al.  Error detecting capabilities of the shortened Hamming codes adopted for error detection in IEEE Standard 802.3 , 1989, IEEE Trans. Commun..

[24]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[25]  Alejandro Aragn-Zavala,et al.  High-altitude platforms for wireless communications , 2008 .

[26]  D. R. Wisely,et al.  Optical wireless: the story so far , 1998, IEEE Commun. Mag..

[27]  E. Leitgeb,et al.  Investigation in Free Space Optical Communication Links Between Unmanned Aerial Vehicles (UAVs) , 2007, 2007 9th International Conference on Transparent Optical Networks.

[28]  Bazil Taha Ahmed,et al.  UMTS-HSDPA in High Altitude Platforms (HAPs) communications with finite transmitted power and unequal cell's load , 2009, Comput. Commun..

[29]  Isaac I. Kim,et al.  Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications , 2001, SPIE Optics East.

[30]  Joachim Horwath,et al.  Experimental verification of optical backhaul links for high‐altitude platform networks: Atmospheric turbulence and downlink availability , 2007, Int. J. Satell. Commun. Netw..

[31]  Shlomi Arnon,et al.  Effects of atmospheric turbulence and building sway on optical wireless-communication systems. , 2003, Optics letters.

[32]  K. Itoo,et al.  あられ状降雪の粒度分布,落下速度および結晶形について;あられ状降雪の粒度分布,落下速度および結晶形について;Size Distribution, Crystal Form and Falling Velocity of Snow-Flake , 1953 .

[33]  D. V. Rogers,et al.  The aR b relation in the calculation of rain attenuation , 1978 .

[34]  Isaac I. Kim,et al.  Availability of free-space optics (FSO) and hybrid FSO/RF systems , 2001, SPIE ITCom.

[35]  Veena Gadwal,et al.  Free space optical communication links in a marine environment , 2006, SPIE Optics + Photonics.

[36]  Peter G. LoPresti,et al.  Atmospheric turbulence effects on a wavelength diversified ground-to-UAV FSO link , 2006, SPIE LASE.

[37]  Pascal Frossard,et al.  Raptor network video coding , 2007, MV '07.

[38]  Sang-Yuep Kim,et al.  8/spl times/10 Gb/s terrestrial optical free space transmission over 3.4 km using an optical repeater , 2002, Optical Fiber Communication Conference and Exhibit.

[39]  D. Cheng Field and wave electromagnetics , 1983 .

[40]  Steve Hranilovic,et al.  Soft-switching hybrid FSO/RF links using short-length raptor codes: design and implementation , 2009, IEEE Journal on Selected Areas in Communications.

[41]  Isaac I. Kim,et al.  Atmospheric propagation characteristics of highest importance to commercial free space optics , 2003, SPIE LASE.

[42]  Lutz H.-J. Lampe,et al.  Rateless coding for hybrid free-space optical and radio-frequency communication , 2010, IEEE Transactions on Wireless Communications.

[43]  C. M. Sliepcevich,et al.  Scattering of Light by Large Spherical Particles , 1953 .

[44]  Cornelis H. Slump,et al.  Reliable Download Delivery in a Terrestrial DAB Network , 2008 .

[45]  Erich Leitgeb,et al.  Optical networks, last mile access and applications , 2005 .

[46]  Dr. Muthu Jeganathan,et al.  Multi-Gigabits-per-second Optical Wireless Communications , 2001 .

[47]  E. Leitgeb,et al.  Reliable Optical Wireless Links within UAV Swarms , 2006, 2006 International Conference on Transparent Optical Networks.

[48]  Zhiqiang Wu,et al.  Performance evaluation of OFDM transmission in UAV wireless communication , 2005, Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, 2005. SSST '05..

[49]  D. Giggenbach,et al.  Optical Satellite Downlinks to Optical Ground Stations and High-Altitude Platforms , 2007, 2007 16th IST Mobile and Wireless Communications Summit.

[50]  David Grace,et al.  Broadband communications from a high-altitude platform: the European HeliNet programme , 2001 .

[51]  Erol Hepsaydir,et al.  Enhanced MBMS in UMTS Networks and Raptor Codes , 2007, 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications.

[52]  S. Hranilovic,et al.  Optimization of beam width, bit error rate and availability for free-space optical links , 2008, 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing.

[53]  H.H. Refai,et al.  Alignment and tracking of a free-space optical communications link to a UAV , 2005, 24th Digital Avionics Systems Conference.

[54]  W. Middleton,et al.  Vision Through the Atmosphere , 1952 .

[55]  Jonathan S. Yedidia,et al.  Rateless codes on noisy channels , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[56]  Andrew A. Chien,et al.  Evaluation of a High Performance Erasure Code Implementation , 2004 .

[57]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[58]  Joseph M. Kahn,et al.  Free-space optical communication through atmospheric turbulence channels , 2002, IEEE Trans. Commun..

[59]  Harold W. O'Brien Visibility and Light Attenuation in Falling Snow. , 1970 .