The Growing Trees Distribution on Boolean Functions
暂无分享,去创建一个
[1] Hanno Lefmann,et al. Some Typical Properties of Large AND/OR Boolean Formulas , 1995, MFCS.
[2] Bernhard Gittenberger,et al. No Shannon effect on probability distributions on Boolean functions induced by random expressions , 2010 .
[3] Rocco A. Servedio,et al. Monotone Boolean formulas can approximate monotone linear threshold functions , 2004, Discret. Appl. Math..
[4] M. Harrison. On the Classification of Boolean Functions by the General Linear and Affine Groups , 1964 .
[5] Claude E. Shannon,et al. The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..
[6] S. Lalley. Finite Range Random Walk on Free Groups and Homogeneous Trees , 1993 .
[7] Zofia Kostrzycka,et al. Statistics of Intuitionistic versus Classical Logics , 2004, Stud Logica.
[8] J. Gabarró,et al. Analytic urns , 2004, math/0407098.
[9] B. Pittel. On growing random binary trees , 1984 .
[10] Danièle Gardy,et al. Balanced And/Or Trees and Linear Threshold Functions , 2009, ANALCO.
[11] Philippe Flajolet,et al. Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..
[12] Danièle Gardy,et al. Tautologies over implication with negative literals , 2010, Math. Log. Q..
[13] Philippe Flajolet,et al. Analytic Combinatorics , 2009 .
[14] M. Drmota. Systems of functional equations , 1997 .
[15] Danièle Gardy,et al. Classical and Intuitionistic Logic Are Asymptotically Identical , 2007, CSL.
[16] H. R. Pitt. Divergent Series , 1951, Nature.
[17] Philippe Flajolet,et al. And/Or Trees Revisited , 2004, Comb. Probab. Comput..
[18] Alan R. Woods. Coloring rules for finite trees, and probabilities of monadic second order sentences , 1997 .