The Growing Trees Distribution on Boolean Functions

We define a probability distribution over the set of Boolean functions of k variables induced by the tree representation of Boolean expressions. The law we are interested in is inspired by the growth model of Binary Search Trees: we call it the growing tree law. We study it over different logical systems and compare the results we obtain to already known distributions induced by the tree representation: Catalan trees, Galton-Watson trees and balanced trees.

[1]  Hanno Lefmann,et al.  Some Typical Properties of Large AND/OR Boolean Formulas , 1995, MFCS.

[2]  Bernhard Gittenberger,et al.  No Shannon effect on probability distributions on Boolean functions induced by random expressions , 2010 .

[3]  Rocco A. Servedio,et al.  Monotone Boolean formulas can approximate monotone linear threshold functions , 2004, Discret. Appl. Math..

[4]  M. Harrison On the Classification of Boolean Functions by the General Linear and Affine Groups , 1964 .

[5]  Claude E. Shannon,et al.  The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..

[6]  S. Lalley Finite Range Random Walk on Free Groups and Homogeneous Trees , 1993 .

[7]  Zofia Kostrzycka,et al.  Statistics of Intuitionistic versus Classical Logics , 2004, Stud Logica.

[8]  J. Gabarró,et al.  Analytic urns , 2004, math/0407098.

[9]  B. Pittel On growing random binary trees , 1984 .

[10]  Danièle Gardy,et al.  Balanced And/Or Trees and Linear Threshold Functions , 2009, ANALCO.

[11]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[12]  Danièle Gardy,et al.  Tautologies over implication with negative literals , 2010, Math. Log. Q..

[13]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[14]  M. Drmota Systems of functional equations , 1997 .

[15]  Danièle Gardy,et al.  Classical and Intuitionistic Logic Are Asymptotically Identical , 2007, CSL.

[16]  H. R. Pitt Divergent Series , 1951, Nature.

[17]  Philippe Flajolet,et al.  And/Or Trees Revisited , 2004, Comb. Probab. Comput..

[18]  Alan R. Woods Coloring rules for finite trees, and probabilities of monadic second order sentences , 1997 .