Negative radiation pressure and negative effective refractive index via dielectric birefringence.

We show that light guided in a planar dielectric slab geometry incorporating a biaxial medium has lossless modes with group and phase velocities in opposite directions. Particles in a vacuum gap inserted into the structure experience negative radiation pressure: the particles are pulled by light rather than pushed by it. This effectively one-dimensional dielectric structure represents a new geometry for achieving negative radiation pressure in a wide range of frequencies with minimal loss. Moreover, this geometry provides a straightforward platform for experimentally resolving the Abrahams-Minkowski dilemma.

[1]  V. Podolskiy,et al.  Strongly anisotropic waveguide as a nonmagnetic left-handed system , 2005 .

[2]  Jianhui Yu,et al.  Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light. , 2008, Physical review letters.

[3]  Mark I. Stockman,et al.  Criterion for Negative Refraction with Low Optical Losses from a Fundamental Principle of Causality , 2007 .

[4]  H. Minkowski,et al.  Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern , 1910 .

[5]  I. Hodgkinson,et al.  Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. , 1998, Applied optics.

[6]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[7]  Steven G. Johnson,et al.  All-angle negative refraction without negative effective index , 2002 .

[8]  Jun Chen,et al.  Optical pulling force , 2011 .

[9]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[10]  D. Christodoulides,et al.  Power circulation via negative energy-flux wormholes in optical nanowaveguides. , 2006, Optics express.

[11]  Cheng-Wei Qiu,et al.  Single gradientless light beam drags particles as tractor beams. , 2011, Physical review letters.

[12]  A Dogariu,et al.  Negative nonconservative forces: optical "tractor beams" for arbitrary objects. , 2011, Physical review letters.

[13]  D. Christodoulides,et al.  Reverse optical forces in negative index dielectric waveguide arrays. , 2011, Optics letters.

[14]  Negative radiation-pressure response of a left-handed plasmonic metamaterial , 2009 .

[15]  J. Drelich,et al.  Laser-based patterning of gold nanoparticles into microstructures. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[16]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[17]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[18]  U. Leonhardt Optics: Momentum in an uncertain light , 2006, Nature.

[19]  Alessandro Salandrino,et al.  Negative index Clarricoats-Waldron waveguides for terahertz and far infrared applications. , 2010, Optics express.

[20]  S. Barnett,et al.  The enigma of optical momentum in a medium , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  D. Pritchard,et al.  Photon recoil momentum in dispersive media. , 2005, Physical review letters.

[22]  S. Barnett,et al.  Resolution of the abraham-minkowski dilemma. , 2010, Physical review letters.

[23]  V. Shalaev,et al.  Fabrication of optical negative-index metamaterials: Recent advances and outlook , 2008 .

[24]  C. Soukoulis,et al.  Electromagnetic waves: Negative refraction by photonic crystals , 2003, Nature.

[25]  V. Shalaev Optical negative-index metamaterials , 2007 .

[26]  Max Abraham,et al.  Zur Elektrodynamik bewegter Körper , 1909 .

[27]  Resolvent Estimates for Schrödinger-Type and Maxwell Equations with Applications , 1998 .

[28]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.