Accelerating Markov Chain Monte Carlo with Active Subspaces
暂无分享,去创建一个
[1] Habib N. Najm,et al. Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..
[2] Johan Larsson,et al. Exploiting active subspaces to quantify uncertainty in the numerical simulation of the HyShot II scramjet , 2014, J. Comput. Phys..
[3] Murali Haran,et al. Markov chain Monte Carlo: Can we trust the third significant figure? , 2007, math/0703746.
[4] D. Gleich,et al. Computing active subspaces with Monte Carlo , 2014, 1408.0545.
[5] Qiqi Wang,et al. Erratum: Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces , 2013, SIAM J. Sci. Comput..
[6] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[7] Daniela Calvetti,et al. Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing , 2007 .
[8] Faming Liang,et al. Statistical and Computational Inverse Problems , 2006, Technometrics.
[9] James Martin,et al. A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..
[10] Heikki Haario,et al. DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..
[11] Andrew Gelman,et al. Handbook of Markov Chain Monte Carlo , 2011 .
[12] Bart G. van Bloemen Waanders,et al. Fast Algorithms for Bayesian Uncertainty Quantification in Large-Scale Linear Inverse Problems Based on Low-Rank Partial Hessian Approximations , 2011, SIAM J. Sci. Comput..
[13] M. Girolami,et al. Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo , 2014, 1407.1517.
[14] Tiangang Cui,et al. Optimal Low-rank Approximations of Bayesian Linear Inverse Problems , 2014, SIAM J. Sci. Comput..
[15] Paul G. Constantine,et al. Active Subspaces - Emerging Ideas for Dimension Reduction in Parameter Studies , 2015, SIAM spotlights.
[16] Juan J. Alonso,et al. Active Subspaces for Shape Optimization , 2014 .
[17] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[18] Tiangang Cui,et al. Likelihood-informed dimension reduction for nonlinear inverse problems , 2014, 1403.4680.
[19] A. Stuart,et al. Sampling the posterior: An approach to non-Gaussian data assimilation , 2007 .
[20] Alison L Gibbs,et al. On Choosing and Bounding Probability Metrics , 2002, math/0209021.
[21] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[22] D. Higdon,et al. Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .
[23] Georg Stadler,et al. Extreme-scale UQ for Bayesian inverse problems governed by PDEs , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.
[24] Tiangang Cui,et al. Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..
[25] Louis H. Y. Chen. An inequality for the multivariate normal distribution , 1982 .
[26] Paul G. Constantine,et al. Discovering an active subspace in a single‐diode solar cell model , 2014, Stat. Anal. Data Min..
[27] Paul G. Constantine,et al. Active subspaces for sensitivity analysis and dimension reduction of an integrated hydrologic model , 2015, Comput. Geosci..