THE X-RAY FLUX DISTRIBUTION OF SAGITTARIUS A* AS SEEN BY CHANDRA

We present a statistical analysis of the X-ray flux distribution of Sgr A* from the Chandra X-Ray Observatory's 3 Ms Sgr A* X-ray Visionary Project in 2012. Our analysis indicates that the observed X-ray flux distribution can be decomposed into a steady quiescent component, represented by a Poisson process with rate Q = (5.24  ±  0.08) × 10−3 counts s−1, and a variable component, represented by a power law process (dN/dF∝F−ξ, ). This slope matches our recently reported distribution of flare luminosities. The variability may also be described by a log-normal process with a median unabsorbed 2–8 keV flux of erg s−1 cm−2 and a shape parameter σ = 2.4 ± 0.2, but the power law provides a superior description of the data. In this decomposition of the flux distribution, all of the intrinsic X-ray variability of Sgr A* (spanning at least three orders of magnitude in flux) can be attributed to flaring activity, likely in the inner accretion flow. We confirm that at the faint end, the variable component contributes ∼10% of the apparent quiescent flux, as previously indicated by our statistical analysis of X-ray flares in these Chandra observations. Our flux distribution provides a new and important observational constraint on theoretical models of Sgr A*, and we use simple radiation models to explore the extent to which a statistical comparison of the X-ray and infrared can provide insights into the physics of the X-ray emission mechanism.

[1]  A Formal Method for Identifying Distinct States of Variability in Time-varying Sources: Sgr A* as an Example , 2014, 1403.5289.

[2]  D. Stern,et al.  NuSTAR DETECTION OF HIGH-ENERGY X-RAY EMISSION AND RAPID VARIABILITY FROM SAGITTARIUS A⋆ FLARES , 2014, 1403.0900.

[3]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[4]  S. Doeleman,et al.  An 8 h characteristic time-scale in submillimetre light curves of Sagittarius A* , 2013, 1308.5968.

[5]  H. Falcke,et al.  Coupled jet-disk model for Sagittarius A*: explaining the flat-spectrum radio core with GRMHD simulations of jets , 2013, 1310.4951.

[6]  N. Barrière,et al.  Exploring plasma evolution during Sagittarius A* flares , 2013, Proceedings of the International Astronomical Union.

[7]  S. Nayakshin,et al.  A CHANDRA/HETGS CENSUS OF X-RAY VARIABILITY FROM Sgr A* DURING 2012 , 2013, 1307.5843.

[8]  J. Cuadra,et al.  Dissecting X-ray–Emitting Gas Around the Center of Our Galaxy , 2013, Science.

[9]  R. Terrier,et al.  Echoes of multiple outbursts of Sagittarius A⋆ revealed by Chandra , 2013, 1307.3954.

[10]  N. Gehrels,et al.  THE X-RAY FLARING PROPERTIES OF Sgr A* DURING SIX YEARS OF MONITORING WITH SWIFT , 2012, 1210.7237.

[11]  J. Dexter,et al.  Tilted black hole accretion disc models of Sagittarius A*: time-variable millimetre to near-infrared emission , 2012, 1204.4454.

[12]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[13]  H. Falcke,et al.  CHANDRA/HETGS OBSERVATIONS OF THE BRIGHTEST FLARE SEEN FROM Sgr A* , 2012, 1209.6354.

[14]  R. Lenzen,et al.  SOURCE-INTRINSIC NEAR-INFRARED PROPERTIES OF SGR A*: TOTAL INTENSITY MEASUREMENTS , 2012, 1208.5836.

[15]  Maochun Wu,et al.  NUMERICAL SIMULATION OF HOT ACCRETION FLOWS. II. NATURE, ORIGIN, AND PROPERTIES OF OUTFLOWS AND THEIR POSSIBLE OBSERVATIONAL APPLICATIONS , 2012, 1206.4173.

[16]  R. Genzel,et al.  AN INVERSE COMPTON SCATTERING ORIGIN OF X-RAY FLARES FROM Sgr A* , 2012, 1203.2188.

[17]  M. Voit,et al.  RADIATIVE PROCESSES , 2012 .

[18]  J. A. Zensus,et al.  Millimeter to X-ray flares from Sagittarius A* , 2012 .

[19]  S. Anderson,et al.  Using the Fundamental Plane of black hole activity to distinguish X-ray processes from weakly accreting black holes , 2011, 1105.3211.

[20]  R. Terrier,et al.  Concurrent X-ray, near-infrared, sub-millimeter, and GeV gamma-ray observations of Sagittarius A , 2011, 1102.0192.

[21]  A. Goldwurm,et al.  THE TWO STATES OF Sgr A* IN THE NEAR-INFRARED: BRIGHT EPISODIC FLARES ON TOP OF LOW-LEVEL CONTINUOUS VARIABILITY , 2010, 1008.1984.

[22]  Prateek Sharma,et al.  TIME-DEPENDENT MODELS OF FLARES FROM SAGITTARIUS A* , 2010, 1005.0389.

[23]  F. Baganoff,et al.  INFLOW–OUTFLOW MODEL WITH CONDUCTION AND SELF-CONSISTENT FEEDING FOR Sgr A* , 2010, 1004.0702.

[24]  París,et al.  DISCOVERY OF A SUPERLUMINAL Fe K ECHO AT THE GALACTIC CENTER: THE GLORIOUS PAST OF Sgr A* PRESERVED BY MOLECULAR CLOUDS , 2010, 1003.2001.

[25]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[26]  H. Bushouse,et al.  SIMULTANEOUS MULTI-WAVELENGTH OBSERVATIONS OF Sgr A* DURING 2007 APRIL 1–11 , 2009, 0907.3786.

[27]  W. Brandt,et al.  Modeling mm- to X-ray flare emission from Sagittarius A* , 2009, 0904.2460.

[28]  T. Paumard,et al.  EVIDENCE FOR X-RAY SYNCHROTRON EMISSION FROM SIMULTANEOUS MID-INFRARED TO X-RAY OBSERVATIONS OF A STRONG Sgr A* FLARE , 2009, 0903.3416.

[29]  A. Eckart,et al.  A POWER-LAW BREAK IN THE NEAR-INFRARED POWER SPECTRUM OF THE GALACTIC CENTER BLACK HOLE , 2009, 0902.2475.

[30]  Dwingeloo,et al.  Jet-lag in Sagittarius A*: what size and timing measurements tell us about the central black hole in the Milky Way , 2009, 0901.3723.

[31]  A. Gomboc,et al.  Tidal effects on small bodies by massive black holes , 2009, 0901.3447.

[32]  L. Ho,et al.  A magnetohydrodynamical model for the formation of episodic jets , 2008, 0811.2893.

[33]  Jessica R. Lu,et al.  A NEAR-INFRARED VARIABILITY STUDY OF THE GALACTIC BLACK HOLE: A RED NOISE SOURCE WITH NO DETECTED PERIODICITY , 2008, 0810.0446.

[34]  A. Eckart,et al.  A 600 Minute Near-Infrared Light Curve of Sagittarius A* , 2008, 0809.2580.

[35]  M. Calvani,et al.  On the tidal evolution of the orbits of low-mass satellites around black holes , 2008 .

[36]  France Arizona State University,et al.  X-ray hiccups from Sagittarius A* observed by XMM-Newton - The second brightest flare and three moderate flares caught in half a day , 2008, 0806.4088.

[37]  J. M. Moran,et al.  An X-Ray, Infrared, and Submillimeter Flare of Sagittarius A* , 2007, 0712.2877.

[38]  Jessica R. Lu,et al.  A Constant Spectral Index for Sagittarius A* during Infrared/X-Ray Intensity Variations , 2007, 0706.1782.

[39]  P. Uttley,et al.  Active galactic nuclei as scaled-up Galactic black holes , 2006, Nature.

[40]  R. Narayan,et al.  Thermal X-Ray Iron Line Emission from the Galactic Center Black Hole Sagittarius A* , 2005, astro-ph/0511590.

[41]  P. Uttley,et al.  X-ray variability of NGC 3227 and 5506 and the nature of active galactic nucleus ‘states’ , 2005 .

[42]  Andrea Goldwurm,et al.  Repeated X-Ray Flaring Activity in Sagittarius A* , 2005, astro-ph/0508412.

[43]  Sera Markoff,et al.  Sagittarius A* in Context: Daily Flares as a Probe of the Fundamental X-Ray Emission Process in Accreting Black Holes , 2004, astro-ph/0412140.

[44]  A. Eckart,et al.  First simultaneous NIR/X-ray detection of a flare from Sgr A , 2004, astro-ph/0403577.

[45]  Ramesh Narayan,et al.  On the Nature of the Variable Infrared Emission from Sagittarius A* , 2004, astro-ph/0401429.

[46]  H. Falcke,et al.  A scheme to unify low-power accreting black holes Jet-dominated accretion flows and the radio/X-ray correlation , 2003, astro-ph/0305335.

[47]  D. Rouan,et al.  Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre , 2003, Nature.

[48]  Cea,et al.  XMM-Newton observation of the brightest X-ray flare detected so far from Sgr A , 2003, astro-ph/0307110.

[49]  T. D. Matteo,et al.  A Fundamental plane of black hole activity , 2003, astro-ph/0305261.

[50]  Ramesh Narayan,et al.  Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A* , 2003, astro-ph/0304125.

[51]  United Kingdom,et al.  A New X-Ray Flare from the Galactic Nucleus Detected with the XMM-Newton Photon Imaging Cameras , 2002, astro-ph/0207620.

[52]  E. Quataert A Thermal Bremsstrahlung Model for the Quiescent X-Ray Emission from Sagittarius A* , 2002, astro-ph/0201395.

[53]  John E. Davis,et al.  Event Pileup in Charge-coupled Devices , 2001 .

[54]  Fulvio Melia,et al.  An Accretion-induced X-Ray Flare in Sagittarius A* , 2001, astro-ph/0110564.

[55]  H. Falcke,et al.  The Nature of the 10 kilosecond X-ray flare in Sgr A* , 2001, astro-ph/0109081.

[56]  Caltech,et al.  Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre , 2001, Nature.

[57]  Fulvio Melia,et al.  Electron Acceleration around the Supermassive Black Hole at the Galactic Center , 2001, astro-ph/0106162.

[58]  E. Quataert,et al.  Convection-dominated Accretion Flows , 1999, astro-ph/9912440.

[59]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[60]  A. Marscher,et al.  An Analysis of the Synchrotron Self-Compton Model for the Multi--Wave Band Spectra of Blazars , 1996 .

[61]  Ramesh Narayan,et al.  Explaining the spectrum of Sagittarius A* with a model of an accreting black hole , 1995, Nature.

[62]  M. Stephens,et al.  K-Sample Anderson–Darling Tests , 1987 .

[63]  T. Geballe,et al.  The central parsec of the Galaxy , 1979 .

[64]  G. Rybicki,et al.  Radiative processes in astrophysics , 1979 .

[65]  A. Pettitt A two-sample Anderson-Darling rank statistic , 1976 .

[66]  D. Darling,et al.  A Test of Goodness of Fit , 1954 .