A genome wide dosage suppressor network reveals genomic robustness

Genomic robustness is the extent to which an organism has evolved to withstand the effects of deleterious mutations. We explored the extent of genomic robustness in budding yeast by genome wide dosage suppressor analysis of 53 conditional lethal mutations in cell division cycle and RNA synthesis related genes, revealing 660 suppressor interactions of which 642 are novel. This collection has several distinctive features, including high co-occurrence of mutant-suppressor pairs within protein modules, highly correlated functions between the pairs and higher diversity of functions among the co-suppressors than previously observed. Dosage suppression of essential genes encoding RNA polymerase subunits and chromosome cohesion complex suggests a surprising degree of functional plasticity of macromolecular complexes, and the existence of numerous degenerate pathways for circumventing the effects of potentially lethal mutations. These results imply that organisms and cancer are likely able to exploit the genomic robustness properties, due the persistence of cryptic gene and pathway functions, to generate variation and adapt to selective pressures.

[1]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[2]  Bor-Sen Chen,et al.  Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme , 2015, Evolutionary bioinformatics online.

[3]  E. Airoldi,et al.  Differential Stoichiometry among Core Ribosomal Proteins , 2014, bioRxiv.

[4]  S. Ho,et al.  The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection , 2014, Evolutionary bioinformatics online.

[5]  A. Raval,et al.  Introduction to Biological Networks , 2013 .

[6]  D. Luse,et al.  Inactivated RNA Polymerase II Open Complexes Can Be Reactivated with TFIIE* , 2011, The Journal of Biological Chemistry.

[7]  Yoshinori Watanabe,et al.  Condensin association with histone H2A shapes mitotic chromosomes , 2011, Nature.

[8]  G. Giaever,et al.  Dosage suppression genetic interaction networks enhance functional wiring diagrams of the cell , 2011, Nature Biotechnology.

[9]  Frederick S. Vizeacoumar,et al.  Systematic exploration of essential yeast gene function with temperature-sensitive mutants , 2011, Nature Biotechnology.

[10]  Sourav Bandyopadhyay,et al.  Rewiring of Genetic Networks in Response to DNA Damage , 2010, Science.

[11]  Y. Kashi,et al.  Genome-wide analysis of DNA turnover and gene expression in stationary-phase Saccharomyces cerevisiae. , 2010, Microbiology.

[12]  Gary D Bader,et al.  The Genetic Landscape of a Cell , 2010, Science.

[13]  Hiroki Saito,et al.  Unexpected consequences of a sudden and massive transposon amplification on rice gene expression , 2009, Nature.

[14]  Arend Hintze,et al.  Modularity and anti-modularity in networks with arbitrary degree distribution , 2009, Biology Direct.

[15]  S. Pu,et al.  Up-to-date catalogues of yeast protein complexes , 2008, Nucleic acids research.

[16]  István Simon,et al.  Malleable Machines in Transcription Regulation: The Mediator Complex , 2008, PLoS Comput. Biol..

[17]  F. Sherman,et al.  Overexpressed ribosomal proteins suppress defective chaperonins in Saccharomyces cerevisiae. , 2008, FEMS yeast research.

[18]  Norman Pavelka,et al.  Aneuploidy Underlies Rapid Adaptive Evolution of Yeast Cells Deprived of a Conserved Cytokinesis Motor , 2008, Cell.

[19]  Wan Kyu Kim,et al.  Age-Dependent Evolution of the Yeast Protein Interaction Network Suggests a Limited Role of Gene Duplication and Divergence , 2008, PLoS Comput. Biol..

[20]  A. Barabasi,et al.  High-Quality Binary Protein Interaction Map of the Yeast Interactome Network , 2008, Science.

[21]  P. Mieczkowski,et al.  Double-strand breaks associated with repetitive DNA can reshape the genome , 2008, Proceedings of the National Academy of Sciences.

[22]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[23]  G. Servant,et al.  Remodeling Yeast Gene Transcription by Activating the Ty1 Long Terminal Repeat Retrotransposon under Severe Adenine Deficiency , 2008, Molecular and Cellular Biology.

[24]  Rachel B. Brem,et al.  Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks , 2008, Nature Genetics.

[25]  C. Landry,et al.  An in Vivo Map of the Yeast Protein Interactome , 2008, Science.

[26]  E. Raineri,et al.  Evolvability and hierarchy in rewired bacterial gene networks , 2008, Nature.

[27]  S. Onesti,et al.  Unstructured N Terminus of the RNA Polymerase II Subunit Rpb4 Contributes to the Interaction of Rpb4·Rpb7 Subcomplex with the Core RNA Polymerase II of Saccharomyces cerevisiae* , 2008, Journal of Biological Chemistry.

[28]  G. Wagner,et al.  The road to modularity , 2007, Nature Reviews Genetics.

[29]  Wayne M Patrick,et al.  Multicopy suppression underpins metabolic evolvability. , 2007, Molecular biology and evolution.

[30]  Arend Hintze,et al.  Evolution of Complex Modular Biological Networks , 2007, PLoS Comput. Biol..

[31]  S. Gygi,et al.  Mek1 Kinase Is Regulated To Suppress Double-Strand Break Repair between Sister Chromatids during Budding Yeast Meiosis , 2007, Molecular and Cellular Biology.

[32]  Grant W. Brown,et al.  Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map , 2007, Nature.

[33]  Ronald W. Davis,et al.  High-density yeast-tiling array reveals previously undiscovered introns and extensive regulation of meiotic splicing , 2007, Proceedings of the National Academy of Sciences.

[34]  Xiaomei Wu,et al.  Prediction of yeast protein–protein interaction network: insights from the Gene Ontology and annotations , 2006, Nucleic acids research.

[35]  John Doyle,et al.  Module-Based Analysis of Robustness Tradeoffs in the Heat Shock Response System , 2006, PLoS Comput. Biol..

[36]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[37]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[38]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[39]  Mark Gerstein,et al.  Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. , 2005, Genes & development.

[40]  M. Osley,et al.  Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae , 2005, Nature.

[41]  Kevin P. Byrne,et al.  The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. , 2005, Genome research.

[42]  Marc Vidal,et al.  Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis , 2005, Nature.

[43]  T. Hirano,et al.  Dynamic molecular linkers of the genome: the first decade of SMC proteins. , 2005, Genes & development.

[44]  D. Koshland,et al.  Rings, bracelet or snaps: fashionable alternatives for Smc complexes , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[45]  Hunter B. Fraser,et al.  Modularity and evolutionary constraint on proteins , 2005, Nature Genetics.

[46]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[47]  John C. Doyle,et al.  Surviving heat shock: control strategies for robustness and performance. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[49]  Nicholas T Ingolia,et al.  Topology and Robustness in the Drosophila Segment Polarity Network , 2004, PLoS biology.

[50]  B. Birren,et al.  Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae , 2004, Nature.

[51]  Roger D Kornberg,et al.  Structural Basis of Transcription: An RNA Polymerase II-TFIIB Cocrystal at 4.5 Angstroms , 2004, Science.

[52]  Z. Oltvai,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[53]  D. Koshland,et al.  Meiotic condensin is required for proper chromosome compaction, SC assembly, and resolution of recombination-dependent chromosome linkages , 2003, The Journal of cell biology.

[54]  S. Mangan,et al.  The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. , 2003, Journal of molecular biology.

[55]  M. J. Mallory,et al.  Ume1p Represses Meiotic Gene Transcription in Saccharomyces cerevisiae through Interaction with the Histone Deacetylase Rpd3p* , 2003, Journal of Biological Chemistry.

[56]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M. Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[59]  Ronald W. Davis,et al.  Role of duplicate genes in genetic robustness against null mutations , 2003, Nature.

[60]  A. Bergman,et al.  Waddington's canalization revisited: Developmental stability and evolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[62]  M. Hampsey,et al.  The RNA Polymerase II Machinery Structure Illuminates Function , 2002, Cell.

[63]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[64]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[65]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[66]  L. Serrano,et al.  Engineering stability in gene networks by autoregulation , 2000, Nature.

[67]  A. Strunnikov,et al.  The Condensin Complex Governs Chromosome Condensation and Mitotic Transmission of Rdna , 2000, The Journal of cell biology.

[68]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[69]  J. W. Little,et al.  Robustness of a gene regulatory circuit , 1999, The EMBO journal.

[70]  Michael R. Green,et al.  Dissecting the Regulatory Circuitry of a Eukaryotic Genome , 1998, Cell.

[71]  Michael Hampsey,et al.  Molecular Genetics of the RNA Polymerase II General Transcriptional Machinery , 1998, Microbiology and Molecular Biology Reviews.

[72]  N. Kleckner,et al.  Interhomolog Bias during Meiotic Recombination: Meiotic Functions Promote a Highly Differentiated Interhomolog-Only Pathway , 1997, Cell.

[73]  Martin A. Nowak,et al.  Evolution of genetic redundancy , 1997, Nature.

[74]  L. Altenberg,et al.  PERSPECTIVE: COMPLEX ADAPTATIONS AND THE EVOLUTION OF EVOLVABILITY , 1996, Evolution; international journal of organic evolution.

[75]  A. Kondrashov Sex and deleterious mutation , 1994, Nature.

[76]  T. A. Brown,et al.  A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. , 1990, Nucleic acids research.

[77]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[78]  Michael Karin,et al.  Genetic Properties Influencing the Evolvability of Gene Expression , 2007 .

[79]  L. Lai,et al.  UC San Francisco UC San Francisco Previously Published Works Title Robustness and modular design of the Drosophila segment polarity network , 2006 .

[80]  Günter P. Wagner,et al.  Complex Adaptations and the Evolution of Evolvability , 2005 .

[81]  H. Mewes,et al.  The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. , 2004, Nucleic acids research.

[82]  P. Hartman,et al.  Mechanisms of suppression. , 1973, Advances in genetics.