Haemodynamics-Driven Developmental Pruning of Brain Vasculature in Zebrafish

This in vivo time-lapse imaging study in zebrafish reveals how changes to brain blood flow drive vessel pruning via endothelial cell migration, and how pruning leads to the simplification of the brain vasculature during development.

[1]  Didier Y. R. Stainier,et al.  Cardiac troponin T is essential in sarcomere assembly and cardiac contractility , 2002, Nature Genetics.

[2]  S. Sumanas,et al.  Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis. , 2010, Developmental biology.

[3]  Li Yuan,et al.  Flow regulates arterial-venous differentiation in the chick embryo yolk sac , 2003, Development.

[4]  Yi Zheng,et al.  Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Hua Su,et al.  Essential Regulation of CNS Angiogenesis by the Orphan G Protein–Coupled Receptor GPR124 , 2010, Science.

[6]  Johnathon R. Walls,et al.  Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor , 2011, Proceedings of the National Academy of Sciences.

[7]  Scott E Fraser,et al.  Vascular remodeling of the mouse yolk sac requires hemodynamic force , 2007, Development.

[8]  R. Moon,et al.  Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. , 2002, Development.

[9]  Erez Raz,et al.  A role for Rho GTPases and cell–cell adhesion in single-cell motility in vivo , 2010, Nature Cell Biology.

[10]  A. N. Strahler DYNAMIC BASIS OF GEOMORPHOLOGY , 1952 .

[11]  Erez Raz,et al.  Imaging protein activity in live embryos using fluorescence resonance energy transfer biosensors , 2011, Nature Protocols.

[12]  Calvin J Kuo,et al.  Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis , 2009, Proceedings of the National Academy of Sciences.

[13]  S. Ikeda,et al.  Identification and modulation of voltage-gated Ca2+ currents in zebrafish Rohon-Beard neurons. , 2011, Journal of neurophysiology.

[14]  V. Bautch,et al.  Neurovascular development , 2009, Cell adhesion & migration.

[15]  P. Carmeliet,et al.  Neurovascular signalling defects in neurodegeneration , 2008, Nature Reviews Neuroscience.

[16]  Bengt R. Johansson,et al.  Pericytes regulate the blood–brain barrier , 2010, Nature.

[17]  Berislav V. Zlokovic,et al.  Pericytes Control Key Neurovascular Functions and Neuronal Phenotype in the Adult Brain and during Brain Aging , 2010, Neuron.

[18]  S. Ekker,et al.  Distinct requirements for zebrafish angiogenesis revealed by a VEGF-A morphant. , 2000, Yeast.

[19]  A. Pries,et al.  Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis , 2010, Development.

[20]  F. V. van Eeden,et al.  Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia. , 2009, Blood.

[21]  Peng-chun Yu,et al.  TRPC1 Is Essential for In Vivo Angiogenesis in Zebrafish , 2010, Circulation research.

[22]  B. Zlokovic The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders , 2008, Neuron.

[23]  Shuo Lin,et al.  NXT2 is required for embryonic heart development in zebrafish , 2005, BMC Developmental Biology.

[24]  K. Plate,et al.  Wnt/β-catenin signaling controls development of the blood–brain barrier , 2008, The Journal of cell biology.

[25]  D. Stainier,et al.  Cellular and molecular analyses of vascular tube and lumen formation in zebrafish , 2005, Development.

[26]  Ferdinand le Noble,et al.  What determines blood vessel structure? Genetic prespecification vs. hemodynamics. , 2006, Physiology.

[27]  A. Pries,et al.  Structural adaptation and stability of microvascular networks: theory and simulations. , 1998, American journal of physiology. Heart and circulatory physiology.

[28]  H. Hamada,et al.  Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch , 2007, Nature.

[29]  K. Jin,et al.  From angiogenesis to neuropathology , 2005, Nature.

[30]  Jingtai Cao,et al.  The Dll4/Notch pathway controls postangiogenic blood vessel remodeling and regression by modulating vasoconstriction and blood flow. , 2011, Blood.

[31]  M. Schwartz,et al.  Mechanotransduction in vascular physiology and atherogenesis , 2009, Nature Reviews Molecular Cell Biology.

[32]  I. Shiojima,et al.  Obligatory participation of macrophages in an angiopoietin 2-mediated cell death switch , 2007, Development.

[33]  R. Jain,et al.  Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks in vivo , 2010 .

[34]  S. Chien,et al.  Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression , 2002, The EMBO journal.

[35]  Andrew P. McMahon,et al.  WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature , 2005, Nature.

[36]  D. Kleinfeld,et al.  Two-Photon Imaging of Cortical Surface Microvessels Reveals a Robust Redistribution in Blood Flow after Vascular Occlusion , 2006, PLoS biology.

[37]  Peter Carmeliet,et al.  Regulation of angiogenesis by oxygen and metabolism. , 2009, Developmental cell.

[38]  B. Barres,et al.  Pericytes are required for blood–brain barrier integrity during embryogenesis , 2010, Nature.

[39]  D. H. Padget,et al.  The cranial venous system in man in reference to development, adult configuration, and relation to the arteries. , 1956, The American journal of anatomy.

[40]  R. Skalak,et al.  THE HISTORY OF POISEUILLE'S LAW , 1993 .

[41]  J. Reed,et al.  Birc2 (cIap1) regulates endothelial cell integrity and blood vessel homeostasis , 2007, Nature Genetics.

[42]  L. Luo,et al.  Axon retraction and degeneration in development and disease. , 2005, Annual review of neuroscience.

[43]  W. Risau,et al.  Mechanisms of angiogenesis , 1997, Nature.

[44]  K. Fogarty,et al.  MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis , 2010, Nature.

[45]  B. Weinstein,et al.  The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. , 2001, Developmental biology.

[46]  M. Matsuda,et al.  Activation of Rac and Cdc42 Video Imaged by Fluorescent Resonance Energy Transfer-Based Single-Molecule Probes in the Membrane of Living Cells , 2002, Molecular and Cellular Biology.

[47]  Didier Y. R. Stainier,et al.  Molecular control of endothelial cell behaviour during blood vessel morphogenesis , 2011, Nature Reviews Molecular Cell Biology.

[48]  Anne J. Ridley,et al.  Mammalian Rho GTPases: new insights into their functions from in vivo studies , 2008, Nature Reviews Molecular Cell Biology.

[49]  R. Watts,et al.  Connecting vascular and nervous system development: angiogenesis and the blood-brain barrier. , 2010, Annual review of neuroscience.

[50]  Holger Gerhardt,et al.  Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. , 2009, Developmental cell.

[51]  K. Alitalo,et al.  Molecular regulation of angiogenesis and lymphangiogenesis , 2007, Nature Reviews Molecular Cell Biology.

[52]  B. Reglin,et al.  Structural adaptation of microvascular networks: functional roles of adaptive responses. , 2001, American journal of physiology. Heart and circulatory physiology.

[53]  J. Rubenstein,et al.  Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain , 2008, Nature Neuroscience.

[54]  Andrew P. McMahon,et al.  Canonical Wnt Signaling Regulates Organ-Specific Assembly and Differentiation of CNS Vasculature , 2008, Science.

[55]  J. Haga,et al.  Molecular basis of the effects of shear stress on vascular endothelial cells. , 2005, Journal of biomechanics.

[56]  V. Bautch,et al.  Neurovascular development uses VEGF-A signaling to regulate blood vessel ingression into the neural tube , 2009, Development.

[57]  Arndt F. Siekmann,et al.  Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling , 2011, Development.

[58]  C. Nüsslein-Volhard,et al.  Live Imaging of Neuronal Degradation by Microglia Reveals a Role for v0-ATPase a1 in Phagosomal Fusion In Vivo , 2008, Cell.

[59]  M. Fishman,et al.  Endothelial Signaling in Kidney Morphogenesis A Role for Hemodynamic Forces , 2002, Current Biology.

[60]  J. Morel,et al.  Optimal Transportation Networks: Models and Theory , 2008 .

[61]  K. Nagashima,et al.  GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood–brain barrier , 2011, Proceedings of the National Academy of Sciences.

[62]  Gabriel Acevedo-Bolton,et al.  Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis , 2003, Nature.

[63]  Elisabetta Dejana,et al.  The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. , 2009, Developmental cell.

[64]  J. Gutkind,et al.  Assembly and patterning of the vascular network of the vertebrate hindbrain , 2011, Development.

[65]  Leonard I Zon,et al.  Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants , 2003, Nature Immunology.

[66]  K. Pekkan,et al.  Interaction between alk1 and blood flow in the development of arteriovenous malformations , 2011, Development.

[67]  Nathan D. Lawson,et al.  Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries , 2007, Nature.

[68]  James M. Harris,et al.  Hematopoietic Stem Cell Development Is Dependent on Blood Flow , 2009, Cell.

[69]  C. Macrae,et al.  Hedgehog signaling via angiopoietin1 is required for developmental vascular stability , 2010, Mechanisms of Development.

[70]  Y. Fung,et al.  The pattern of coronary arteriolar bifurcations and the uniform shear hypothesis , 2006, Annals of Biomedical Engineering.

[71]  S. Chien,et al.  Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. , 2011, Physiological reviews.

[72]  T. Chan-Ling,et al.  Roles of Endothelial Cell Migration and Apoptosis in Vascular Remodeling during Development of the Central Nervous System , 2000, Microcirculation.