CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS?

Spitzer Space Telescope infrared observations indicate that several transiting extrasolar giant planets have thermal inversions in their upper atmospheres. Above a relative minimum, the temperature appears to increase with altitude. Such an inversion probably requires a species at high altitude that absorbs a significant amount of incident optical/UV radiation. Some authors have suggested that the strong optical absorbers titanium oxide (TiO) and vanadium oxide (VO) could provide the needed additional opacity, but if regions of the atmosphere are cold enough for Ti and V to be sequestered into solids they might rain out and be severely depleted. With a model of the vertical distribution of a refractory species in gaseous and condensed form, we address the question of whether enough TiO (or VO) could survive aloft in an irradiated planet's atmosphere to produce a thermal inversion. We find that it is unlikely that VO could play a critical role in producing thermal inversions. Furthermore, we find that macroscopic mixing is essential to the TiO hypothesis; without macroscopic mixing, such a heavy species cannot persist in a planet's upper atmosphere. The amount of macroscopic mixing that is required depends on the size of condensed titanium-bearing particles that form in regions of an atmosphere that are too cold for gaseous TiO to exist. We parameterize the macroscopic mixing with the eddy diffusion coefficient Kzz and find, as a function of particle size a, the values that Kzz must assume on the highly irradiated planets HD?209458b, HD?149026b, TrES-4, and OGLE-TR-56b to loft enough titanium to the upper atmosphere for the TiO hypothesis to be correct. On these planets, we find that for TiO to be responsible for thermal inversions Kzz must be at least a few times 107 cm2 s?1, even for a = 0.1 ?m, and increases to nearly 1011 cm2 s?1 for a = 10 ?m. Such large values may be problematic for the TiO hypothesis, but are not impossible.

[1]  Ivan Hubeny,et al.  A computer program for calculating non-LTE model stellar atmospheres , 1988 .

[2]  Max Iklé,et al.  Über die elektrische Elmentarladung und die Avogadrosche Konstante = On the elementary electrical charge and the Avogadro Constant , 1913 .

[3]  Thierry Forveille,et al.  Spectroscopic Classification of Late-M and L Field Dwarfs , 1999 .

[4]  J. Clarke,et al.  The H Lyman-α emission line from the upper atmosphere of Jupiter: Parametric radiative transfer study and comparison with data , 2007 .

[5]  C. Davies,et al.  Definitive equations for the fluid resistance of spheres , 1945 .

[6]  R. G. West,et al.  WASP-12b: THE HOTTEST TRANSITING EXTRASOLAR PLANET YET DISCOVERED , 2008, 0812.3240.

[7]  Space Science Reviews , 1962, Nature.

[8]  A. Burrows,et al.  On the Indirect Detection of Sodium in the Atmosphere of the Planetary Companion to HD 209458 , 2002, astro-ph/0208263.

[9]  Peter Goldreich,et al.  Spin-orbit coupling in the solar system , 1966 .

[10]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[11]  A time-dependent radiative model of HD 209458b , 2004, astro-ph/0409468.

[12]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[13]  D. Frail,et al.  A planetary system around the millisecond pulsar PSR1257 + 12 , 1992, Nature.

[14]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[15]  E. Salpeter,et al.  Time‐dependent nucleation theory , 1977 .

[16]  A. Burrows,et al.  Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres , 1999 .

[17]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[18]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[19]  Robert A. Millikan,et al.  Coefficients of Slip in Gases and the Law of Reflection of Molecules from the Surfaces of Solids and Liquids , 1923 .

[20]  A. P. Showman,et al.  The Influence of Atmospheric Dynamics on the Infrared Spectra and Light Curves of Hot Jupiters , 2006 .

[21]  R. P. Butler,et al.  A Transiting “51 Peg-like” Planet , 2000, The Astrophysical journal.

[22]  D. Ehrenreich,et al.  TiO and VO broad band absorption features in the optical spectrum of the atmosphere of the hot-Jupiter HD 209458b , 2008, 0809.1865.

[23]  Hai Wang,et al.  Drag force, diffusion coefficient, and electric mobility of small particles. I. Theory applicable to the free-molecule regime. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  T. Brown Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres , 2001, astro-ph/0101307.

[25]  P. Drossart,et al.  Jupiter: evidence for a phosphine enhancement at high northern latitudes , 1990 .

[26]  A. Burrows,et al.  Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres , 2006, astro-ph/0607211.

[27]  The N2K Consortium. II. A Transiting Hot Saturn around HD 149026 with a Large Dense Core , 2005, astro-ph/0507009.

[28]  On the surface heating of synchronously spinning short-period jovian planets , 2003, astro-ph/0312476.

[29]  A New Atmospheric Model for HD 189733 b , 2008, 0808.3118.

[30]  F. S. Johnson,et al.  Eddy diffusion and oxygen transport in the lower thermosphere , 1965 .

[31]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[32]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[33]  G. Laughlin,et al.  Hydrodynamic Simulations of Unevenly Irradiated Jovian Planets , 2007, 0711.2106.

[34]  Adam Burrows,et al.  ALBEDO AND REFLECTION SPECTRA OF EXTRASOLAR GIANT PLANETS , 1999 .

[35]  A. Burrows,et al.  Theory of Extrasolar Giant Planet Transits , 2001, astro-ph/0101024.

[36]  S. Seager,et al.  Atmospheric Circulation of Close-In Extrasolar Giant Planets. I. Global, Barotropic, Adiabatic Simulations , 2006, astro-ph/0607338.

[37]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[38]  R. Kurucz Model atmospheres for G, F, A, B, and O stars , 1979 .

[39]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[40]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[41]  M. Knudsen,et al.  Luftwiderstand gegen die langsame Bewegung kleiner Kugeln , 1911 .

[42]  J. L. Monteith,et al.  The impact of weather on life: As explored in the quarterly journal of the royal meteorological society , 2002 .

[43]  T. Geballe,et al.  The Origin and Vertical Distribution of Carbon Monoxide in Jupiter , 1988 .

[44]  Curtis S. Cooper,et al.  Dynamic Meteorology at the Photosphere of HD 209458b , 2005, astro-ph/0502476.

[45]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[46]  David Charbonneau,et al.  TrES-4: A Transiting Hot Jupiter of Very Low Density , 2007, 0708.0834.

[47]  A. Burrows,et al.  A Systematic Study of Departures from Chemical Equilibrium in the Atmospheres of Substellar Mass Objects , 2007, 0705.3922.

[48]  I. Iben,et al.  Physical Processes in Red Giants , 1981 .

[49]  R. Rodrigo,et al.  A nonsteady one‐dimensional theoretical model of Mars' neutral atmospheric composition between 30 and 200 km , 1990 .

[50]  P. Drossart,et al.  Carbon Monoxide on Jupiter: Evidence for Both Internal and External Sources , 2002 .

[51]  M. Marley,et al.  Atmospheric Circulation of Hot Jupiters: Three-dimensional Circulation Models of HD 209458b and HD 189733b with Simplified Forcing , 2008, 0802.0327.

[52]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[53]  David Charbonneau,et al.  Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands , 2007, 0709.3980.

[54]  David G. Monet,et al.  Dwarfs Cooler than “M”: The Definition of Spectral Type “L” Using Discoveries from the 2-Micron All-Sky Survey (2MASS) , 1999 .

[55]  B. Gaudi,et al.  On Constraining a Transiting Exoplanet’s Rotation Rate with Its Transit Spectrum , 2007, 0705.0004.

[56]  Sara Seager,et al.  “Weather” Variability of Close-in Extrasolar Giant Planets , 2002, astro-ph/0210499.

[57]  R. L. Agacy,et al.  Resistance to the Motion of a Small Sphere Moving Through a Gas , 1965 .

[58]  Joseph L. Hora,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THERMAL EMISSION OF EXOPLANET XO-1B , 2022 .

[59]  B. Draine Dust Formation Processes Around Red Giants and Supergiants , 1981 .

[60]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[61]  M. G. El‐Fandy On the physics of dusty atmospheres , 1953 .

[62]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[63]  Proceedings of the Physical Society , 1948, Nature.

[64]  K. Menou,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: A SHALLOW THREE-DIMENSIONAL MODEL , 2008, 0809.1671.

[65]  Ammonia as a tracer of chemical equilibrium in the T7.5 dwarf Gliese 570D , 2006, astro-ph/0605563.

[66]  G. Marcy,et al.  A Planetary Companion to 70 Virginis , 1996 .

[67]  S. Seager,et al.  Toward Eclipse Mapping of Hot Jupiters , 2006, astro-ph/0612412.

[68]  Modeling the Formation of Clouds in Brown Dwarf Atmospheres , 2003 .

[69]  C. Griffith,et al.  Disequilibrium chemistry in a brown dwarf's atmosphere: Carbon monoxide in Gliese 229B , 1999 .

[70]  Sara Seager,et al.  The Changing Face of the Extrasolar Giant Planet HD 209458b , 2002, astro-ph/0209227.

[71]  I. Hubeny,et al.  Theory for the Secondary Eclipse Fluxes, Spectra, Atmospheres, and Light Curves of Transiting Extrasolar Giant Planets , 2006, astro-ph/0607014.

[72]  B. Fegley,et al.  Chemical Models of the Deep Atmospheres of Jupiter and Saturn , 1994 .

[73]  Ivan Hubeny,et al.  Non-LTE line-blanketed model atmospheres of hot stars. 1: Hybrid complete linearization/accelerated lambda iteration method , 1995 .

[74]  A. Burrows,et al.  DETECTION OF A TEMPERATURE INVERSION IN THE BROADBAND INFRARED EMISSION SPECTRUM OF TrES-4 , 2008, 0810.0021.

[75]  G. Laughlin,et al.  Observational Consequences of Hydrodynamic Flows on Hot Jupiters , 2007, astro-ph/0702700.

[76]  JOHN S. Lewis,et al.  Vertical distribution of disequilibrium species in Jupiter's troposphere , 1984 .

[77]  I. Dobbs-Dixon,et al.  Atmospheric Dynamics of Short-Period Extrasolar Gas Giant Planets. I. Dependence of Nightside Temperature on Opacity , 2007, 0704.3269.

[78]  K. Lodders Titanium and Vanadium Chemistry in Low-Mass Dwarf Stars , 2002 .

[79]  PHYSICAL PARAMETERS OF TWO VERY COOL T DWARFS , 2006, astro-ph/0611062.

[80]  L. Beda Thermal physics , 1994 .

[81]  E. Cunningham On the Velocity of Steady Fall of Spherical Particles through Fluid Medium , 1910 .

[82]  Adam Burrows,et al.  Theoretical Spectra and Atmospheres of Extrasolar Giant Planets , 2003 .

[83]  A. P. Showman,et al.  TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES , 2009, 0912.2350.

[84]  A. W. Brewer Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere , 1949 .

[85]  R. Kurucz Solar abundance model atmospheres for 0,1,2,4,8 km/s. , 1994 .