PAC-Bayesian inductive and transductive learning
暂无分享,去创建一个
[1] Tong Zhang. From ɛ-entropy to KL-entropy: Analysis of minimum information complexity density estimation , 2006, math/0702653.
[2] Tong Zhang,et al. Information-theoretic upper and lower bounds for statistical estimation , 2006, IEEE Transactions on Information Theory.
[3] S. Geer,et al. Square root penalty: Adaptation to the margin in classification and in edge estimation , 2005, math/0507422.
[4] Jean-Yves Audibert. Aggregated estimators and empirical complexity for least square regression , 2004 .
[5] John Langford,et al. Computable Shell Decomposition Bounds , 2000, J. Mach. Learn. Res..
[6] J. Picard,et al. Statistical learning theory and stochastic optimization : École d'eté de probabilités de Saint-Flour XXXI - 2001 , 2004 .
[7] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[8] A. Tsybakov,et al. Optimal aggregation of classifiers in statistical learning , 2003 .
[9] Peter A Flach,et al. Proceedings of the 16th Annual Conference on Computational Learning Theory and 7th Kernel Workshop , 2003 .
[10] Manfred K. Warmuth,et al. Relating Data Compression and Learnability , 2003 .
[11] Matthias W. Seeger,et al. PAC-Bayesian Generalisation Error Bounds for Gaussian Process Classification , 2003, J. Mach. Learn. Res..
[12] Nello Cristianini,et al. On the generalization of soft margin algorithms , 2002, IEEE Trans. Inf. Theory.
[13] P. Massart,et al. Gaussian model selection , 2001 .
[14] Jean-Philippe Vert,et al. Adaptive context trees and text clustering , 2001, IEEE Trans. Inf. Theory.
[15] John Langford,et al. An Improved Predictive Accuracy Bound for Averaging Classifiers , 2001, ICML.
[16] Jean-Philippe Vert. Text Categorization Using Adaptive Context Trees , 2001, CICLing.
[17] O. Catoni. Laplace transform estimates and deviation inequalities , 2001 .
[18] Olivier Catoni,et al. DATA COMPRESSION AND ADAPTIVE HISTOGRAMS , 2002 .
[19] Nello Cristianini,et al. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .
[20] S. Geer. Applications of empirical process theory , 2000 .
[21] E. Mammen,et al. Smooth Discrimination Analysis , 1999 .
[22] G. Blanchard. The “progressive mixture” estimator for regression trees , 1999 .
[23] Yuhong Yang,et al. Information-theoretic determination of minimax rates of convergence , 1999 .
[24] David A. McAllester. PAC-Bayesian model averaging , 1999, COLT '99.
[25] P. Massart,et al. Risk bounds for model selection via penalization , 1999 .
[26] John Shawe-Taylor,et al. Structural Risk Minimization Over Data-Dependent Hierarchies , 1998, IEEE Trans. Inf. Theory.
[27] David A. McAllester. Some PAC-Bayesian Theorems , 1998, COLT' 98.
[28] M. Habib. Probabilistic methods for algorithmic discrete mathematics , 1998 .
[29] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[30] P. Massart,et al. From Model Selection to Adaptive Estimation , 1997 .
[31] Frans M. J. Willems,et al. Context weighting for general finite-context sources , 1996, IEEE Trans. Inf. Theory.
[32] Neri Merhav,et al. Hierarchical universal coding , 1996, IEEE Trans. Inf. Theory.
[33] Frans M. J. Willems,et al. The context-tree weighting method: basic properties , 1995, IEEE Trans. Inf. Theory.
[34] Manfred K. Warmuth. Proceedings of the seventh annual conference on Computational learning theory , 1994, COLT 1994.
[35] Noga Alon,et al. Scale-sensitive dimensions, uniform convergence, and learnability , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[36] A. Barron. Are Bayes Rules Consistent in Information , 1987 .