Stepwise selenium transfer from tertiary phosphine selenides to [Ru3(CO)12]. Structural characterization of the primary product [Ru3(μ3-Se)(μ3-CO)(CO)7(PPh3)2]

The monoselenido clusters [Ru3(μ3-Se)(μ3-CO)(CO)7(PR′R2)2] (R = Ph, R′ = Ph or CH2Ph; R = R′ = p-C6H4OMe) obtained by the reaction of phosphine selenides R2R′PSe with [Ru3(CO)12], undergo the second attack by R2R′PSe affording, under appropriate conditions, the corresponding diselenido derivative [Ru3(μ3-Se)2(CO)7(PR′R2)2]. The crystal structure of [Ru3(μ3-Se)(μ3-CO)(CO)7(PPh3)2] 4 showing the first triruthenium triangle bicapped by a selenium atom and a carbonyl ligand, is also reported.

[1]  C. Massera,et al.  Multiple Oxidative Addition of Ph2(C5H4N)PSe to [Ru3(CO)12] − Structural Characterization of [Ru3(µ3‐Se)(µ‐PPh2)2(µ‐C5H4N)(µ3‐C5H4N)(CO)6] Containing Two Differently Metalated 2‐Pyridyl Fragments , 2001 .

[2]  Wei Lin Leong,et al.  The reaction of triphenylphosphine selenide with triosmium clusters: a facile cluster coupling through a selenium atom , 2001 .

[3]  C. Massera,et al.  Multiple oxidative addition of diphenyl-2-thienylphosphine selenide to [Ru3(CO)12]: crystal and molecular structure of [Ru3(μ3-Se)(μ-PPh2)(μ-η1:η2-C4H3S)(CO)6{P(C4H3S)Ph2}] , 2000 .

[4]  C. Massera,et al.  Chelating versus bridging behaviour and NMR fluxionality of dppf in the nido clusters [M3Se2(CO)7(dppf)] [M = Fe or Ru, dppf = Fe(η5-C5H4PPh2)2]. Crystal structure of the chelated ruthenium derivative† , 1999 .

[5]  M. Lanfranchi,et al.  Ph3PSe as a convenient synthon for one-step syntheses of Ph3P-substituted selenido carbonyl iron and ruthenium clusters. Crystal structures of Fe3(μ3-Se)(μ-CO)(CO)7(PPh3)2, M3(μ3-Se)2(CO)7(Pph3)2 (MFe or Ru) and Ru4(μ4-Se)2(μ-CO)2(CO)7(PPh3)2☆ , 1995 .

[6]  R. Gobetto,et al.  Solution structures and dynamics of M3(CO)12−x(NCCH3)x (MRu, x = 1, 2, 3; MOs, x = 1, 2) , 1995 .

[7]  M. Steigerwald,et al.  The use of phosphine chalcogenides in the preparation of cobalt chalcogenides , 1993 .

[8]  G. Huttner,et al.  Triphenylphosphanchalkogenide als selektive Reagentien zum Aufbau von μ3-Chalkogenverbrückten Eisencarbonylclustern , 1993 .

[9]  N. Taylor,et al.  Synthesis of 62-electron square planar clusters with group 15 and 16 main group atoms: Structural characterization of Ru4(CO)11(μ4-PPh)(μ4-S) and Ru4(CO)10(μ4-PPh)(μ4-Se)(PEt3): Bonding preferences in cappingNido Ru4(CO)13(μ3-PPh) , 1991 .

[10]  R. D. Adams,et al.  Cluster synthesis. 18. Metal-metal exchange reactions. The synthesis and structural characterizations of Ru3Mo2(CO)10(.mu.-CO)2Cp2(.mu.4-S) and RuMo2(CO)7Cp2(.mu.3-S) , 1988 .

[11]  N. Taylor,et al.  A one step synthesis of phosphine substituted sulphur capped clusters from phosphine sulphides: X-ray crystal structures of [Fe3(CO)8(µ2-CO)(µ3-S)(Ph2PC2Pri)] and [Ru3(CO)8(µ3-S)2(Ph2PC2But)] , 1988 .

[12]  F. Ugozzoli,et al.  ABSORB: A computer program for correcting observed structure factors from absorption effects in crystal structure analysis , 1987, Comput. Chem..

[13]  I. Horváth,et al.  Synthesis of sulfidoosmium carbonyl cluster compounds by the photochemical decomposition of HOs3(CO)10(μ-SPh) and its subsequent reactions with selected small molecules. Synthesis and crystal and molecular structure of Os3(CO)9(μ3-CO)(μ3-S) , 1984 .

[14]  D. I. Stuart,et al.  An empirical method for correcting diffractometer data for absorption effects , 1983 .

[15]  L. Markó,et al.  Synthesis, structure and characterization of Fe3(CO)10S, a new iron carbonyl sulphide , 1980 .