Correlated wavefunction methods in bioinorganic chemistry

In this commentary the challenges faced in the application of wavefunction-based ab initio methods to (open-shell) transition metal complexes of (bio)inorganic interest are briefly touched on. Both single-reference and multireference methods are covered. It is stressed that the generation and nature of the reference wavefunction is a subject of major importance. How erroneous results can be easily obtained even with coupled-cluster theory is illustrated through the example of the septet–quintet separation in iron(IV)–oxo complexes. Second, the interplay between relativistic and correlation effects is important. This is demonstrated with coupled-cluster calculations on models for dinuclear copper active sites, where relativity has a major influence on the relative stabilities of the bis(μ-oxo) and side-on peroxo species.

[1]  Hans-Joachim Werner,et al.  Local perturbative triples correction (T) with linear cost scaling , 2000 .

[2]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[3]  Michael Dolg,et al.  Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf-Pt. , 2009, The Journal of chemical physics.

[4]  P. Siegbahn,et al.  Mechanism of selective halogenation by SyrB2: a computational study. , 2010, Journal of the American Chemical Society.

[5]  F. Neese,et al.  Multireference ab initio calculations of g tensors for trinuclear copper clusters in multicopper oxidases. , 2010, The journal of physical chemistry. B.

[6]  Frank Neese,et al.  A critical evaluation of DFT, including time-dependent DFT, applied to bioinorganic chemistry , 2006, JBIC Journal of Biological Inorganic Chemistry.

[7]  Frank Neese,et al.  A spectroscopy oriented configuration interaction procedure , 2003 .

[8]  Kirk A Peterson,et al.  Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. , 2005, The Journal of chemical physics.

[9]  Michael Dolg,et al.  Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd. , 2007, The Journal of chemical physics.

[10]  Christopher J. Cramer,et al.  Quantum chemical studies of molecules incorporating a Cu2O22+ core , 2009 .

[11]  Frank Neese,et al.  All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. , 2008, Journal of chemical theory and computation.

[12]  Walter Thiel,et al.  Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations. , 2010, The Journal of chemical physics.

[13]  Roland Lindh,et al.  Accurate ab initio density fitting for multiconfigurational self-consistent field methods. , 2008, The Journal of chemical physics.

[14]  Dimitrios G Liakos,et al.  Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. , 2009, The Journal of chemical physics.

[15]  R. Cimiraglia,et al.  n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants , 2002 .

[16]  Jean-Paul Malrieu,et al.  Specific CI calculation of energy differences: Transition energies and bond energies , 1993 .

[17]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[18]  F. Neese,et al.  Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method. , 2009, The Journal of chemical physics.

[19]  S. Grimme,et al.  Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. , 2007, Organic & biomolecular chemistry.

[20]  Frank Neese,et al.  A Local Pair Natural Orbital Coupled Cluster Study of Rh Catalyzed Asymmetric Olefin Hydrogenation. , 2010, Journal of Chemical Theory and Computation.

[21]  Hans-Joachim Werner,et al.  Eliminating the domain error in local explicitly correlated second-order Møller-Plesset perturbation theory. , 2008, The Journal of chemical physics.

[22]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[23]  Bjoern O. Roos Theoretical Studies of Electronically Excited States of Molecular Systems Using Multiconfigurational Perturbation Theory , 1999 .

[24]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[25]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[26]  B. Ruscic,et al.  W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions. , 2006, The Journal of chemical physics.

[27]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[28]  Piotr Piecuch,et al.  Theoretical characterization of end-on and side-on peroxide coordination in ligated Cu2O2 models. , 2006, The journal of physical chemistry. A.

[29]  K. Hodgson,et al.  Cu K-Edge XAS Study of the [Cu2(μ-O)2] Core: Direct Experimental Evidence for the Presence of Cu(III) , 1997 .

[30]  F. Neese,et al.  Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange , 2009 .

[31]  Per E M Siegbahn,et al.  Significant van der Waals Effects in Transition Metal Complexes. , 2010, Journal of chemical theory and computation.

[32]  Per E. M. Siegbahn,et al.  A comparison of the thermodynamics of O–O bond cleavage for dicopper complexes in enzymes and synthetic systems , 2003, JBIC Journal of Biological Inorganic Chemistry.

[33]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[34]  F. Neese,et al.  Interplay of Correlation and Relativistic Effects in Correlated Calculations on Transition-Metal Complexes: The (Cu2O2)(2+) Core Revisited. , 2011, Journal of chemical theory and computation.

[35]  Trygve Helgaker,et al.  Basis-set convergence in correlated calculations on Ne, N2, and H2O , 1998 .

[36]  T. D. Stack,et al.  Structure and spectroscopy of copper-dioxygen complexes. , 2004, Chemical reviews.

[37]  B. Roos,et al.  Applications of level shift corrected perturbation theory in electronic spectroscopy , 1996 .

[38]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[39]  Thomas Bondo Pedersen,et al.  Reduced scaling in electronic structure calculations using Cholesky decompositions , 2003 .

[40]  L. Pettersson,et al.  On the accuracy of gradient corrected density functional methods for transition metal complexes , 1995 .

[41]  P. Siegbahn,et al.  Is the bis-mu-oxo Cu2(III,III) state an intermediate in tyrosinase? , 2001, Journal of the American Chemical Society.

[42]  Trygve Helgaker,et al.  Quantitative quantum chemistry , 2008 .

[43]  F. Neese,et al.  Theoretical description of the structure and magnetic properties of nitroxide-Cu(II)-nitroxide spin triads by means of multiconfigurational ab initio calculations. , 2009, The journal of physical chemistry. A.

[44]  Frank Neese,et al.  Efficient Structure Optimization with Second-Order Many-Body Perturbation Theory: The RIJCOSX-MP2 Method. , 2010, Journal of chemical theory and computation.

[45]  F. Neese,et al.  Systematic theoretical study of the zero-field splitting in coordination complexes of Mn(III). Density functional theory versus multireference wave function approaches. , 2010, The journal of physical chemistry. A.

[46]  Frank Neese,et al.  All-Electron Scalar Relativistic Basis Sets for the Lanthanides. , 2009, Journal of chemical theory and computation.

[47]  M. Blomberg,et al.  Density functional theory of biologically relevant metal centers. , 2003, Annual review of physical chemistry.

[48]  J. Harvey,et al.  NO bonding to heme groups: DFT and correlated ab initio calculations. , 2009, The journal of physical chemistry. A.

[49]  Cristina Puzzarini,et al.  Theoretical models on the Cu2O2 torture track: mechanistic implications for oxytyrosinase and small-molecule analogues. , 2006, The journal of physical chemistry. A.

[50]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[51]  Mihály Kállay,et al.  Calculation of electronic g-tensors using coupled cluster theory. , 2009, The journal of physical chemistry. A.

[52]  P. Jensen,et al.  Computational molecular spectroscopy for X∼2Δ NiCN: Large-amplitude bending motion , 2008 .

[53]  Garnet Kin-Lic Chan,et al.  A review of canonical transformation theory , 2010 .

[54]  F. Neese,et al.  Accurate modeling of spin-state energetics in spin-crossover systems with modern density functional theory. , 2010, Inorganic chemistry.