Optimal Blind Quantum Computation

Blind quantum computation allows a client with limited quantum capabilities to interact with a remote quantum computer to perform an arbitrary quantum computation, while keeping the description of that computation hidden from the remote quantum computer. While a number of protocols have been proposed in recent years, little is currently understood about the resources necessary to accomplish the task. Here, we present general techniques for upper and lower bounding the quantum communication necessary to perform blind quantum computation, and use these techniques to establish concrete bounds for common choices of the client's quantum capabilities. Our results show that the universal blind quantum computation protocol of Broadbent, Fitzsimons, and Kashefi, comes within a factor of 8/3 of optimal when the client is restricted to preparing single qubits. However, we describe a generalization of this protocol which requires exponentially less quantum communication when the client has a more sophisticated device.

[1]  Andrew Odlyzko,et al.  Proceedings on Advances in cryptology---CRYPTO '86 , 1987 .

[2]  Elham Kashefi,et al.  Distributed Measurement-based Quantum Computation , 2007, Electron. Notes Theor. Comput. Sci..

[3]  J. Hatzenbuhler,et al.  DIMENSION THEORY , 1997 .

[4]  Alexander K. Petrenko,et al.  Electronic Notes in Theoretical Computer Science , 2009 .

[5]  M. Bremner,et al.  Temporally unstructured quantum computation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  October I Physical Review Letters , 2022 .

[7]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[8]  Andrzej Blikle,et al.  Mathematical Foundations of Computer Science , 1974, Lecture Notes in Computer Science.

[9]  Elham Kashefi,et al.  Demonstration of Blind Quantum Computing , 2011, Science.

[10]  Lance Fortnow,et al.  Proceedings of the 55th Annual ACM Symposium on Theory of Computing , 2011, STOC.

[11]  Tomoyuki Morimae,et al.  Efficient universal blind quantum computation. , 2013, Physical review letters.

[12]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[13]  Stephen M. Barnett,et al.  Quantum information , 2005, Acta Physica Polonica A.

[14]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[15]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[16]  Kathy P. Wheeler,et al.  Reviews of Modern Physics , 2013 .

[17]  H. R.,et al.  The Philosophical Transactions , 1889, Nature.

[18]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[19]  T. Morimae,et al.  Ancilla-Driven Universal Blind Quantum Computation , 2012, 1210.7450.

[20]  Louis Salvail,et al.  BLIND QUANTUM COMPUTATION , 2003 .

[21]  vCaslav Brukner,et al.  Quantum-state preparation with universal gate decompositions , 2010, 1003.5760.

[22]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[23]  Gary L. Miller,et al.  Proceedings of the twenty-eighth annual ACM symposium on Theory of computing , 1996, STOC 1996.

[24]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.