Spark plasma sintering of a commercially available granulated zirconia powder: Comparison with hot-pressing

[1]  Michael J. Hoffmann,et al.  Direct comparison between hot pressing and electric field-assisted sintering of submicron alumina , 2009 .

[2]  G. Bernard-Granger,et al.  Phenomenological analysis of densification mechanism during spark plasma sintering of MgAl_2O_4 , 2009, 1804.00001.

[3]  G. Bernard-Granger,et al.  Densification mechanism involved during spark plasma sintering of a codoped α-alumina material: Part I. Formal sintering analysis , 2009 .

[4]  G. Bernard-Granger,et al.  Spark plasma sintering of a commercially available granulated zirconia powder—II. Microstructure after sintering and ionic conductivity , 2008 .

[5]  G. Bernard-Granger,et al.  Influence of Co-Doping on the Sintering Path and on the Optical Properties of a Submicronic Alumina Material , 2008 .

[6]  G. Bernard-Granger,et al.  Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification , 2007 .

[7]  G. Bernard-Granger,et al.  Apparent Activation Energy for the Densification of a Commercially Available Granulated Zirconia Powder , 2007 .

[8]  M. Kilo,et al.  Mechanical loss, creep, diffusion and ionic conductivity of ZrO2-8 mol%Y2O3 polycrystals , 2000 .

[9]  J. Doukhan,et al.  Quantitative transmission X-ray microanalysis of ionic compounds , 1994 .

[10]  Byung‐Kook Kim,et al.  Determination of the Oxygen Self‐Diffusion Coefficients in Y2O3‐Containing Tetragonal Zirconia Polycrystals by Raman Spectrometric Monitoring of the 16O‐18O Exchange Reaction , 1993 .

[11]  Michael F. Ashby,et al.  Diffusion-accommodated flow and superplasticity , 1973 .

[12]  A. Heuer,et al.  Additives and interfaces in electronic ceramics , 1983 .