Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance

[1]  Chia-Chun Chen,et al.  Direct-growth of polyaniline nanowires for enzyme-immobilization and glucose detection , 2009 .

[2]  Changhong Liu,et al.  Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties , 2009 .

[3]  Hao Zhang,et al.  Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability , 2008 .

[4]  Hiroyuki Nishide,et al.  Toward Flexible Batteries , 2008, Science.

[5]  Maria Forsyth,et al.  Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors , 2007 .

[6]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[7]  W. Fang,et al.  Arrayed CNx NT-RuO2 nanocomposites directly grown on Ti-buffered Si substrate for supercapacitor applications , 2007 .

[8]  J. Reynolds,et al.  Conjugated polymers : processing and applications , 2006 .

[9]  H.Q. Li,et al.  Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance , 2006 .

[10]  S. Pyun,et al.  A study on mechanism of charging/discharging at amorphous manganese oxide electrode in 0.1 M Na2SO4 solution , 2006 .

[11]  Norio Miura,et al.  INFLUENCE OF THE MICROSTRUCTURE ON THE SUPERCAPACITIVE BEHAVIOR OF POLYANILINE/SINGLE-WALL CARBON NANOTUBE COMPOSITES , 2006 .

[12]  Li-Zhen Fan,et al.  High-performance polypyrrole electrode materials for redox supercapacitors , 2006 .

[13]  F. Béguin,et al.  Supercapacitors based on conducting polymers/nanotubes composites , 2006 .

[14]  Vinay Gupta,et al.  Electrochemically Deposited Polyaniline Nanowire’s Network A High-Performance Electrode Material for Redox Supercapacitor , 2005 .

[15]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[16]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[17]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[18]  Chi-Chang Hu,et al.  Oxidative Synthesis of RuO x ⋅ n H 2 O with Ideal Capacitive Characteristics for Supercapacitors , 2004 .

[19]  P. Soudan,et al.  Electrochemical Properties of Ruthenium-Based Nanocrystalline Materials as Electrodes for Supercapacitors , 2002 .

[20]  B. Popov,et al.  Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method , 2002 .

[21]  A. Burke Ultracapacitors: why, how, and where is the technology , 2000 .

[22]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[23]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[24]  J. Ko,et al.  Electrochemical characteristics of dodecylbenzene sulfonic acid-doped polyaniline in aqueous solutions , 1999 .

[25]  Z. Mandić,et al.  Polyaniline as an electrocatalytic material , 1996 .

[26]  P. Passiniemi Simple method for determining water diffusion coefficient in conducting polymers , 1995 .

[27]  J. Lacroix,et al.  Electrolyte Effects on the Switching Reaction of Polyaniline , 1988 .

[28]  Robert A. Huggins,et al.  Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films , 1980 .