Multiscale Edge Detection Using First-Order Derivative of Anisotropic Gaussian Kernels

Spatially scaled edges are ubiquitous in natural images. To better detect edges with heterogeneous widths, in this paper, we propose a multiscale edge detection method based on first-order derivative of anisotropic Gaussian kernels. These kernels are normalized in scale-space, yielding a maximum response at the scale of the observed edge, and accordingly, the edge scale can be identified. Subsequently, the maximum response and the identified edge scale are used to compute the edge strength. Furthermore, we propose an adaptive anisotropy factor of which the value decreases as the kernel scale increases. This factor improves the noise robustness of small-scale kernels while alleviating the anisotropy stretch effect that occurs in conventional anisotropic methods. Finally, we evaluate our method on widely used datasets. Experimental results validate the benefits of our method over the competing methods.

[1]  Jinhui Tang,et al.  Richer Convolutional Features for Edge Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  M. Abidi,et al.  Detection and classification of edges in color images , 2005, IEEE Signal Processing Magazine.

[3]  Steven W. Zucker,et al.  Local Scale Control for Edge Detection and Blur Estimation , 1996, ECCV.

[4]  Tony Lindeberg Image Matching Using Generalized Scale-Space Interest Points , 2013, SSVM.

[5]  Andrew V. Goldberg,et al.  An efficient cost scaling algorithm for the assignment problem , 1995, Math. Program..

[6]  Ardeshir Goshtasby,et al.  On the Canny edge detector , 2001, Pattern Recognit..

[7]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Peng-Lang Shui,et al.  Anti-Impulse-Noise Edge Detection via Anisotropic Morphological Directional Derivatives. , 2017, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[9]  Tony Lindeberg,et al.  Scale Selection Properties of Generalized Scale-Space Interest Point Detectors , 2012, Journal of Mathematical Imaging and Vision.

[10]  Mathews Jacob,et al.  Design of steerable filters for feature detection using canny-like criteria , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Jitendra Malik,et al.  An empirical approach to grouping and segmentation , 2002 .

[12]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Bin Jiang,et al.  Complex Composite Derivative and Its Application to Edge Detection , 2014, SIAM J. Imaging Sci..

[14]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[15]  Tony Lindeberg,et al.  Edge Detection and Ridge Detection with Automatic Scale Selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  C. Lawrence Zitnick,et al.  Edge Boxes: Locating Object Proposals from Edges , 2014, ECCV.

[17]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[18]  Lei Zhang,et al.  Canny edge detection enhancement by scale multiplication , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Bernard De Baets,et al.  Unsupervised ridge detection using second order anisotropic Gaussian kernels , 2015, Signal Process..

[20]  Ahmed M. Eltawil,et al.  A Beam-Steering Reconfigurable Antenna for WLAN Applications , 2015, IEEE Transactions on Antennas and Propagation.

[21]  Kunal Ray,et al.  Unsupervised edge detection and noise detection from a single image , 2013, Pattern Recognit..

[22]  A. Rosenfeld,et al.  Edge and Curve Detection for Visual Scene Analysis , 1971, IEEE Transactions on Computers.

[23]  Chaitali Chakrabarti,et al.  A Distributed Canny Edge Detector: Algorithm and FPGA Implementation , 2014, IEEE Transactions on Image Processing.

[24]  Bryan W. Scotney,et al.  Edge Detecting for Range Data Using Laplacian Operators , 2010, IEEE Transactions on Image Processing.

[25]  Xiaoping Li,et al.  Nonlinear diffusion with multiple edginess thresholds , 1994, Pattern Recognit..

[26]  Nicolai Petkov,et al.  Contour detection based on nonclassical receptive field inhibition , 2003, IEEE Trans. Image Process..

[27]  Gang Wang,et al.  Blob Reconstruction Using Unilateral Second Order Gaussian Kernels with Application to High-ISO Long-Exposure Image Denoising , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[28]  A. Rosenfeld A nonlinear edge detection technique , 1970 .

[29]  Gang Wang,et al.  Noise-robust line detection using normalized and adaptive second-order anisotropic Gaussian kernels , 2019, Signal Process..

[30]  Humberto Bustince,et al.  Multichannel generalization of the Upper-Lower Edge Detector using ordered weighted averaging operators , 2014, J. Intell. Fuzzy Syst..

[31]  Gang Wang,et al.  Edge Detection Based on the Fusion of Multiscale Anisotropic Edge Strength Measurements , 2017, EUSFLAT/IWIFSGN.

[32]  Tony Lindeberg,et al.  Image Matching Using Generalized Scale-Space Interest Points , 2013, Journal of Mathematical Imaging and Vision.

[33]  Peng-Lang Shui,et al.  Noise-robust color edge detector using gradient matrix and anisotropic Gaussian directional derivative matrix , 2016, Pattern Recognit..

[34]  Humberto Bustince,et al.  Quantitative error measures for edge detection , 2013, Pattern Recognit..

[35]  William McIlhagga,et al.  The Canny Edge Detector Revisited , 2011, International Journal of Computer Vision.

[36]  Irwin Edward Sobel,et al.  Camera Models and Machine Perception , 1970 .

[37]  Peng-Lang Shui,et al.  Noise-robust edge detector combining isotropic and anisotropic Gaussian kernels , 2012, Pattern Recognit..

[38]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Lawrence G. Roberts,et al.  Machine Perception of Three-Dimensional Solids , 1963, Outstanding Dissertations in the Computer Sciences.

[40]  C. Lawrence Zitnick,et al.  Fast Edge Detection Using Structured Forests , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Kai-Fu Yang,et al.  Boundary Detection Using Double-Opponency and Spatial Sparseness Constraint , 2015, IEEE Transactions on Image Processing.

[42]  Humberto Bustince,et al.  Self-adapting weighted operators for multiscale gradient fusion , 2018, Inf. Fusion.

[43]  Penglang Shui,et al.  Corner Detection and Classification Using Anisotropic Directional Derivative Representations , 2013, IEEE Transactions on Image Processing.

[44]  Humberto Bustince,et al.  Separability Criteria for the Evaluation of Boundary Detection Benchmarks , 2016, IEEE Transactions on Image Processing.

[45]  Jitendra Malik,et al.  Detecting and localizing edges composed of steps, peaks and roofs , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[46]  Bernard De Baets,et al.  Superpixel Segmentation Based on Anisotropic Edge Strength , 2019, J. Imaging.

[47]  Mitra Basu,et al.  Gaussian-based edge-detection methods - a survey , 2002, IEEE Trans. Syst. Man Cybern. Part C.

[48]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Long Chen,et al.  Noise robust image edge detection based upon the automatic anisotropic Gaussian kernels , 2017, Pattern Recognit..

[50]  Qi Tian,et al.  A survey of recent advances in visual feature detection , 2015, Neurocomputing.