High‐resolution solar spectral irradiance from extreme ultraviolet to far infrared

[1] This paper presents new extremely high-resolution solar spectral irradiance (SSI) calculations covering wavelengths from 0.12 nm to 100 micron obtained by the Solar Irradiance Physical Modeling (SRPM) system. Daily solar irradiance spectra were constructed for most of Solar Cycle 23 based on a set of physical models of the solar features and non-LTE calculations of their emitted spectra as function of viewing angle, and solar images specifying the distribution of features on the solar disk. Various observational tests are used to assess the quality of the spectra provided here. The present work emphasizes the effects on the SSI of the upper chromosphere and full-non-LTE radiative transfer calculation of level populations and ionizations that are essential for physically consistent results at UV wavelengths and for deep lines in the visible and IR. This paper also considers the photodissociation continuum opacity of molecular species, e.g., CH and OH, and proposes the consideration of NH photodissociation which can solve the puzzle of the missing near-UV opacity in the spectral range of the near-UV. Finally, this paper is based on physical models of the solar atmosphere and extends the previous lower-layer models into the upper-transition-region and coronal layers that are the dominant source of photons at wavelengths shorter than ∼50 nm (except for the He II 30.4 nm line, mainly formed in the lower-transition-region).

[1]  G. Kopp,et al.  A new, lower value of total solar irradiance: Evidence and climate significance , 2011 .

[2]  J. Fontenla,et al.  Physical modeling of spectral irradiance variations , 2005 .

[3]  J. C. del Toro Iniesta,et al.  To appear in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 QUIET SUN INTERNETWORK MAGNETIC FIELDS FROM THE INVERSION OF HINODE MEASUREMENTS , 2022 .

[4]  J. Johnson,et al.  MAPPING THE DISTRIBUTION OF ELECTRON TEMPERATURE AND Fe CHARGE STATES IN THE CORONA WITH TOTAL SOLAR ECLIPSE OBSERVATIONS , 2010 .

[5]  Juan M. Fontenla,et al.  The Lyman-Alpha Line in Various Solar Features. I. Observations , 1988 .

[6]  R. Kurucz Including all the lines , 2009, 0912.5371.

[7]  J. Bonet,et al.  Infrared Photometry of Solar Photospheric Structures. I. Active Regions at the Center of the Disk , 2000 .

[8]  Peter R. Young,et al.  CHIANTI—An Atomic Database for Emission Lines. VII. New Data for X-Rays and Other Improvements , 2006 .

[9]  A. Asensio Ramos,et al.  A substantial amount of hidden magnetic energy in the quiet Sun , 2004, Nature.

[10]  A. Title,et al.  Properties of the Smallest Solar Magnetic Elements. II. Observations versus Hot Wall Models of Faculae , 1997 .

[11]  Eugene H. Avrett,et al.  Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet sun , 1981 .

[12]  C. Fröhlich,et al.  Solar Electromagnetic Radiation Study for Solar Cycle 22. Proceedings. SOLERS22 Workshop, Sakramento Peak, Sunspot, NM (USA), 17 - 21 Jun 1996. , 1998 .

[13]  K. Dere Ionization rate coefficients for the elements hydrogen through zinc , 2007 .

[14]  Eugene H. Avrett,et al.  Calculation of Solar Irradiances. I. Synthesis of the Solar Spectrum , 1999 .

[15]  F. Berrilli,et al.  The Prototype RISE-PSPT Instrument Operating in Rome , 1998 .

[16]  J. Harder,et al.  Chromospheric heating by the Farley-Buneman instability , 2008 .

[17]  P. Mazzotta,et al.  Ionization Balance for Optically Thin Plasmas: Rate Coefficients for all Atoms and Ions of the Elements H to Ni and implication for the calculated X-ray spectrum , 1998, astro-ph/9806391.

[18]  J. Shull,et al.  The ionization equilibrium of astrophysically abundant elements , 1982 .

[19]  G. Rottman,et al.  Coronal Density and Temperature Structure from Coordinated Observations Associated with the Total Solar Eclipse of 1988 March 18 , 1992 .

[20]  P. Hauschildt,et al.  The Molecular Line Opacity of MgH in Cool Stellar Atmospheres , 2002, astro-ph/0206219.

[21]  A. Mannucci,et al.  The October 28, 2003 extreme EUV solar flare and resultant extreme ionospheric effects: Comparison to other Halloween events and the Bastille Day event , 2005 .

[22]  P. Lemaire,et al.  Radiance variations of the quiet Sun at far-ultraviolet wavelengths , 2000 .

[23]  Juan M. Fontenla,et al.  SEMIEMPIRICAL MODELS OF THE SOLAR ATMOSPHERE. III. SET OF NON-LTE MODELS FOR FAR-ULTRAVIOLET/EXTREME-ULTRAVIOLET IRRADIANCE COMPUTATION , 2009 .

[24]  Jianmin Yuan Atomic Data for Opacity Calculations , 2007 .

[25]  O. C. Wilson,et al.  H and K Emission in Late-Type Stars: Dependence of Line Width on Luminosity and Related Topics. , 1957 .

[26]  Juan M. Fontenla,et al.  Energy balance in the solar transition region. III - Helium emission in hydrostatic, constant-abundance models with diffusion , 1993 .

[27]  P. Pilewskie,et al.  The SORCE SIM Solar Spectrum: Comparison with Recent Observations , 2010 .

[28]  M. Giampapa,et al.  Sun-as-a-Star Spectrum Variations 1974-2006 , 2006, astro-ph/0612554.

[29]  G. Thuillier,et al.  The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions , 2003 .

[30]  W. McClintock,et al.  Solar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): Pre-Launch and On-Orbit Calibrations , 2005 .

[31]  R. Howard On the Large-Scale Distribution of Solar Magnetic Fields , 1965 .

[32]  C. I. Short,et al.  Modeling the Violet Spectral Region of Cool Stars: Line and Continuous Opacity , 1996 .

[33]  O. White,et al.  Bright rings around sunspots , 1999, Nature.

[34]  S. Criscuoli,et al.  Radiative emission of solar features in the Ca II K line: comparison of measurements and models , 2010, 1009.0227.

[35]  P. Pilewskie,et al.  Trends in solar spectral irradiance variability in the visible and infrared , 2009 .

[36]  Gary J. Rottman,et al.  Solar EUV Experiment (SEE): Mission overview and first results , 2005 .

[37]  C. Fröhlich,et al.  Evidence of a long-term trend in total solar irradiance , 2009 .

[38]  J. Harder,et al.  Semiempirical Models of the Solar Atmosphere. II. The Quiet-Sun Low Chromosphere at Moderate Resolution , 2007 .

[39]  M. Seaton,et al.  Atomic data for opacity calculations. I. General description , 1987 .

[40]  F. Schmitz A closed solution for an adiabatic sound wave in a grey radiative equilibrium atmosphere , 1984 .

[41]  C. Korendyke,et al.  High-Resolution Center-to-Limb Variation of the Quiet Solar Spectrum near Mg II , 2008 .

[42]  C. Schrijver,et al.  The Properties of Small Magnetic Regions on the Solar Surface and the Implications for the Solar Dynamo(s) , 2002 .

[43]  William E. McClintock,et al.  Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI) , 2008 .

[44]  P. Stancil,et al.  The Photodissociation of SiH+ in Interstellar Clouds and Stellar Atmospheres , 1997 .

[45]  E. Goldfield,et al.  Theoretical study of the radiative properties of the triplet states of the NH radical: Transition dipole moments, radiative lifetimes, photodissociation cross sections , 1991 .

[46]  F. Kneer,et al.  Oscillations of the sun's chromosphere. II - H-alpha line centre and wing filtergram time sequences , 1985 .

[47]  M. Centrone,et al.  Photometric properties of facular features over the activity cycle , 2007 .

[48]  Gérard Thuillier,et al.  Semiempirical Models of the Solar Atmosphere. I. The Quiet- and Active Sun Photosphere at Moderate Resolution , 2006 .