Identifying Key Algorithm Parameters and Instance Features Using Forward Selection

Most state-of-the-art algorithms for large-scale optimization problems expose free parameters, giving rise to combinatorial spaces of possible configurations. Typically, these spaces are hard for humans to understand. In this work, we study a model-based approach for identifying a small set of both algorithm parameters and instance features that suffices for predicting empirical algorithm performance well. Our empirical analyses on a wide variety of hard combinatorial problem benchmarks spanning SAT, MIP, and TSP show that--for parameter configurations sampled uniformly at random--very good performance predictions can typically be obtained based on just two key parameters, and that similarly, few instance features and algorithm parameters suffice to predict the most salient algorithm performance characteristics in the combined configuration/feature space. We also use these models to identify settings of these key parameters that are predicted to achieve the best overall performance, both on average across instances and in an instance-specific way. This serves as a further way of evaluating model quality and also provides a tool for further understanding the parameter space. We provide software for carrying out this analysis on arbitrary problem domains and hope that it will help algorithm developers gain insights into the key parameters of their algorithms, the key features of their instances, and their interactions.

[1]  John R. Rice,et al.  The Algorithm Selection Problem , 1976, Adv. Comput..

[2]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[3]  Kurt Mehlhorn,et al.  Runtime prediction of real programs on real machines , 1997, SODA '97.

[4]  Eugene Fink,et al.  How to Solve It Automatically: Selection Among Problem Solving Methods , 1998, AIPS.

[5]  Adele E. Howe,et al.  Exploiting Competitive Planner Performance , 1999, ECP.

[6]  U. Chatterjee,et al.  Effect of unconventional feeds on production cost, growth performance and expression of quantitative genes in growing pigs , 2022, Journal of the Indonesian Tropical Animal Agriculture.

[7]  Yoav Shoham,et al.  Learning the Empirical Hardness of Optimization Problems: The Case of Combinatorial Auctions , 2002, CP.

[8]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[9]  Thomas Bartz-Beielstein,et al.  Tuning search algorithms for real-world applications: a regression tree based approach , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[10]  Thomas Bartz-Beielstein,et al.  Experimental Research in Evolutionary Computation - The New Experimentalism , 2010, Natural Computing Series.

[11]  D. Kudenko,et al.  Sequential Experiment Designs for Screening and Tuning Parameters of Stochastic Heuristics , 2006 .

[12]  Kevin Leyton-Brown,et al.  Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.

[13]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[14]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[15]  Alan J. Hu,et al.  Boosting Verification by Automatic Tuning of Decision Procedures , 2007 .

[16]  A. E. Eiben,et al.  Efficient relevance estimation and value calibration of evolutionary algorithm parameters , 2007, 2007 IEEE Congress on Evolutionary Computation.

[17]  Frank M. Hutter SPEAR Theorem Prover , 2007 .

[18]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..

[19]  Holger H. Hoos,et al.  A Modular Multiphase Heuristic Solver for Post Enrolment Course Timetabling , 2008 .

[20]  Frank Hutter,et al.  Automated configuration of algorithms for solving hard computational problems , 2009 .

[21]  F. Hutter,et al.  ParamILS: An Automatic Algorithm Configuration Framework , 2009, J. Artif. Intell. Res..

[22]  Yoav Shoham,et al.  Empirical hardness models: Methodology and a case study on combinatorial auctions , 2009, JACM.

[23]  Kousha Etessami,et al.  Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations , 2005, JACM.

[24]  Kate Smith-Miles,et al.  Cross-disciplinary perspectives on meta-learning for algorithm selection , 2009, CSUR.

[25]  Felix Naumann,et al.  Data fusion , 2009, CSUR.

[26]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[27]  Carlos Ansótegui,et al.  A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms , 2009, CP.

[28]  Keld Helsgaun,et al.  General k-opt submoves for the Lin–Kernighan TSP heuristic , 2009, Math. Program. Comput..

[29]  Thomas Stützle,et al.  F-Race and Iterated F-Race: An Overview , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[30]  Kevin Leyton-Brown,et al.  Automated Configuration of Mixed Integer Programming Solvers , 2010, CPAIOR.

[31]  Marco Chiarandini,et al.  Mixed Models for the Analysis of Optimization Algorithms , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[32]  Thomas Bartz-Beielstein,et al.  Experimental Methods for the Analysis of Optimization Algorithms , 2010 .

[33]  H. Hoos,et al.  Generating Fast Domain-Optimized Planners by Automatically Configuring a Generic Parameterised Planner , 2011 .

[34]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[35]  Alfonso Gerevini,et al.  Generating Fast Domain-Specific Planners by Automatically Configuring a Generic Parameterised Planner , 2011 .

[36]  Jano I. van Hemert,et al.  Discovering the suitability of optimisation algorithms by learning from evolved instances , 2011, Annals of Mathematics and Artificial Intelligence.

[37]  Kevin Leyton-Brown,et al.  Algorithm Runtime Prediction: The State of the Art , 2012, ArXiv.

[38]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[39]  Holger H. Hoos,et al.  Automatically Configuring Algorithms for Scaling Performance , 2012, LION.

[40]  Kevin Leyton-Brown,et al.  Parallel Algorithm Configuration , 2012, LION.

[41]  Kevin Leyton-Brown,et al.  Predicting Satisfiability at the Phase Transition , 2012, AAAI.

[42]  Kate Smith-Miles,et al.  Measuring instance difficulty for combinatorial optimization problems , 2012, Comput. Oper. Res..