Distributed sampling of random fields with unknown covariance

This paper considers robotic sensor networks performing spatial estimation tasks.We model a physical process of interest as a spatiotemporal random field with mean unknown and covariance known up to a scaling parameter. We design a distributed coordination algorithm for an heterogeneous network composed of mobile agents that take point measurements of the field and static nodes that fuse the information received from the agents and compute directions of maximum descent of the estimation uncertainty. The technical approach builds on a novel reformulation of Bayesian sequential field estimation, and combines tools from distributed linear iterations, nonlinear programming, and spatial statistics.

[1]  P. Kitanidis Parameter Uncertainty in Estimation of Spatial Functions: Bayesian Analysis , 1986 .

[2]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[3]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[4]  Randy A. Freeman,et al.  Decentralized Environmental Modeling by Mobile Sensor Networks , 2008, IEEE Transactions on Robotics.

[5]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[6]  James G. Bellingham,et al.  Performance metrics for oceanographic surveys with autonomous underwater vehicles , 2001 .

[7]  Naomi Ehrich Leonard,et al.  Collective Motion, Sensor Networks, and Ocean Sampling , 2007, Proceedings of the IEEE.

[8]  Erkki P. Liski,et al.  Topics in Optimal Design , 2002 .

[9]  Jorge Cortés,et al.  A cooperative deployment strategy for optimal sampling in spatiotemporal estimation , 2008, 2008 47th IEEE Conference on Decision and Control.

[10]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[11]  S. Martinez Distributed representation of spatial fields through an adaptive interpolation scheme , 2007, 2007 American Control Conference.

[12]  James V. Zidek,et al.  Statistical Analysis of Environmental Space-Time Processes , 2006 .

[13]  F. Pukelsheim Optimal Design of Experiments (Classics in Applied Mathematics) (Classics in Applied Mathematics, 50) , 2006 .

[14]  J. I The Design of Experiments , 1936, Nature.

[15]  Michael A. Demetriou,et al.  Estimation of Spatially Distributed Processes Using Mobile Spatially Distributed Sensor Network , 2009, SIAM J. Control. Optim..

[16]  Michael L. Stein,et al.  The screening effect in Kriging , 2002 .

[17]  Luc BAUWENS,et al.  Bayesian Methods , 2011 .

[18]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[19]  Michael Jackson,et al.  Optimal Design of Experiments , 1994 .

[20]  D. Bertsekas On the Goldstein-Levitin-Polyak gradient projection method , 1974, CDC 1974.

[21]  Marie A. Gaudard,et al.  Bayesian spatial prediction , 1999, Environmental and Ecological Statistics.

[22]  Jeff Gill,et al.  What are Bayesian Methods , 2008 .

[23]  D. Nychka,et al.  Covariance Tapering for Interpolation of Large Spatial Datasets , 2006 .