SQUID-based detection of ultra-low-field multinuclear NMR of substances hyperpolarized using signal amplification by reversible exchange

[1]  Keiji Enpuku,et al.  SQUIDs in biomagnetism: a roadmap towards improved healthcare , 2016 .

[2]  D. Budker,et al.  Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer. , 2016, Journal of magnetic resonance.

[3]  M. C. Feiters,et al.  NMR detection in biofluid extracts at sub-μM concentrations via para-H2 induced hyperpolarization. , 2016, The Analyst.

[4]  J. Hennig,et al.  Molecular MRI in the Earth's Magnetic Field Using Continuous Hyperpolarization of a Biomolecule in Water. , 2016, The journal of physical chemistry. B.

[5]  K. Ivanov,et al.  A fast field-cycling device for high-resolution NMR: Design and application to spin relaxation and hyperpolarization experiments. , 2016, Journal of magnetic resonance.

[6]  H. Zimmermann,et al.  Transfer of SABRE-derived hyperpolarization to spin-1/2 heteronuclei , 2015 .

[7]  K. Ivanov,et al.  RF-SABRE: A Way to Continuous Spin Hyperpolarization at High Magnetic Fields. , 2015, The journal of physical chemistry. B.

[8]  E. Chekmenev,et al.  15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH , 2015, The journal of physical chemistry. C, Nanomaterials and interfaces.

[9]  D. Budker,et al.  Ultra-low-field NMR relaxation and diffusion measurements using an optical magnetometer. , 2014, Angewandte Chemie.

[10]  J. Hennig,et al.  Continuous re-hyperpolarization of nuclear spins using parahydrogen: theory and experiment. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  R. Kaptein,et al.  The role of level anti-crossings in nuclear spin hyperpolarization. , 2014, Progress in nuclear magnetic resonance spectroscopy.

[12]  M. Izquierdo,et al.  Hydrogen storage in activated carbons produced from coals of different ranks: Effect of oxygen content , 2014 .

[13]  P. He,et al.  The Feasibility of Formation and Kinetics of NMR Signal Amplification by Reversible Exchange (SABRE) at High Magnetic Field (9.4 T) , 2014, Journal of the American Chemical Society.

[14]  E. Chekmenev,et al.  Low-field MRI can be more sensitive than high-field MRI. , 2013, Journal of magnetic resonance.

[15]  K. D. Atkinson,et al.  Optimization of SABRE for polarization of the tuberculosis drugs pyrazinamide and isoniazid , 2013, Journal of magnetic resonance.

[16]  John Clarke,et al.  MRI of the human brain at 130 microtesla , 2013, Proceedings of the National Academy of Sciences.

[17]  R. Kaptein,et al.  Level anti-crossings are a key factor for understanding para-hydrogen-induced hyperpolarization in SABRE experiments. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[18]  Jari Penttilä,et al.  Hybrid ultra‐low‐field MRI and magnetoencephalography system based on a commercial whole‐head neuromagnetometer , 2013, Magnetic resonance in medicine.

[19]  J. Bernarding,et al.  Parahydrogen-induced polarization transfer to 19F in perfluorocarbons for 19F NMR spectroscopy and MRI. , 2013, Chemistry.

[20]  J. Hennig,et al.  A battery-driven, low-field NMR unit for thermally and hyperpolarized samples , 2013, Magnetic Resonance Materials in Physics, Biology and Medicine.

[21]  Martin Burghoff,et al.  Magnetic resonance imaging at frequencies below 1 kHz. , 2013, Magnetic resonance imaging.

[22]  R. Kaptein,et al.  Transfer of Parahydrogen Induced Polarization in Scalar Coupled Systems at Variable Magnetic Field , 2012 .

[23]  H. Spiess,et al.  Level anti-crossings in ParaHydrogen Induced Polarization experiments with Cs-symmetric molecules. , 2012, Journal of magnetic resonance.

[24]  S. Duckett,et al.  The theory and practice of hyperpolarization in magnetic resonance using parahydrogen. , 2012, Progress in nuclear magnetic resonance spectroscopy.

[25]  J. Blanchard,et al.  Zero-field NMR enhanced by parahydrogen in reversible exchange. , 2012, Journal of the American Chemical Society.

[26]  C. Griesinger,et al.  Similarity of SABRE field dependence in chemically different substrates. , 2012, Journal of magnetic resonance.

[27]  S. Wijmenga,et al.  NMR at earth's magnetic field using para-hydrogen induced polarization. , 2011, Journal of magnetic resonance.

[28]  Bernhard Blümich,et al.  Para-hydrogen induced polarization of amino acids, peptides and deuterium-hydrogen gas. , 2011, Physical chemistry chemical physics : PCCP.

[29]  K. D. Atkinson,et al.  Iridium N-Heterocyclic Carbene Complexes as Efficient Catalysts for Magnetization Transfer from para-Hydrogen , 2011, Journal of the American Chemical Society.

[30]  D. Budker,et al.  Parahydrogen-enhanced zero-field nuclear magnetic resonance , 2011, 1102.5378.

[31]  B. Blümich,et al.  Trace analysis by low-field NMR: breaking the sensitivity limit. , 2010, Analytical chemistry.

[32]  V. Zotev,et al.  Microtesla MRI with dynamic nuclear polarization. , 2009, Journal of magnetic resonance.

[33]  R. Johnsen,et al.  Theory and Experiment , 2010 .

[34]  K. D. Atkinson,et al.  Spontaneous transfer of parahydrogen derived spin order to pyridine at low magnetic field. , 2009, Journal of the American Chemical Society.

[35]  K. D. Atkinson,et al.  Reversible Interactions with para-Hydrogen Enhance NMR Sensitivity by Polarization Transfer , 2009, Science.

[36]  W. Price,et al.  Spin dynamics: Basics of nuclear magnetic resonance, 2nd edition. , 2009 .

[37]  J. Mosher,et al.  Microtesla MRI of the human brain combined with MEG. , 2007, Journal of magnetic resonance.

[38]  John Clarke,et al.  SQUID-detected magnetic resonance imaging in microtesla fields. , 2007, Annual review of biomedical engineering.

[39]  Bernhard Blümich,et al.  Analysis of molecular structures by homo- and hetero-nuclear J-coupled NMR in ultra-low field , 2007 .

[40]  John Clarke,et al.  Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 microT to 1.5 T. , 2007, Journal of magnetic resonance.

[41]  J. Hutchison,et al.  Gradiometer pick-up coil design for a low field SQUID-MRI system , 1999, Magnetic Resonance Materials in Physics, Biology and Medicine.

[42]  Michael Hatridge,et al.  SQUID-detected microtesla MRI in the presence of metal. , 2006, Journal of magnetic resonance.

[43]  Martin Burghoff,et al.  J-coupling nuclear magnetic resonance spectroscopy of liquids in nT fields. , 2006, Journal of the American Chemical Society.

[44]  Alex I. Braginski,et al.  Applications of SQUIDs and SQUID systems , 2006 .

[45]  J. Hutchison,et al.  Liquid helium cryostat for SQUID-based MRI receivers , 2005 .

[46]  G Gottardi,et al.  A four coil exposure system (tetracoil) producing a highly uniform magnetic field , 2003, Bioelectromagnetics.

[47]  R. Eisenberg,et al.  One-hydrogen polarization in hydroformylation promoted by platinum-tin and iridium carbonyl complexes: a new type of parahydrogen-induced effect. , 2002, Journal of the American Chemical Society.

[48]  Robert McDermott,et al.  Liquid-State NMR and Scalar Couplings in Microtesla Magnetic Fields , 2002, Science.

[49]  M. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .

[50]  J. Bargon,et al.  Parahydrogen induced polarization , 1997 .

[51]  J. Hutchison,et al.  A 4.2 K receiver coil and SQUID amplifier used to improve the SNR of low-field magnetic resonance images of the human arm , 1997 .

[52]  J. Hutchison,et al.  Use of a DC SQUID receiver preamplifier in a low field MRI system , 1995, IEEE Transactions on Applied Superconductivity.

[53]  Richard Eisenberg,et al.  Para hydrogen induced polarization in hydrogenation reactions , 1987 .

[54]  D. Weitzel,et al.  Design Data for Ortho-Parahydrogen Converters , 1960 .

[55]  D. Weitzel,et al.  Iron Catalyst for Production of Liquid para‐Hydrogen , 1956 .

[56]  D. Weitzel,et al.  Continuous Analysis of Ortho‐Parahydrogen Mixtures , 1955 .