Sublinear circuits and the constrained signomial nonnegativity problem

Conditional Sums-of-AM/GM-Exponentials (conditional SAGE) is a decomposition method to prove nonnegativity of a signomial or polynomial over some subset X of real space. In this article, we undertake the first structural analysis of conditional SAGE signomials for convex sets X. We introduce the X-circuits of a finite subset $${\mathcal {A}}\subset {\mathbb {R}}^n$$ A ⊂ R n , which generalize the simplicial circuits of the affine-linear matroid induced by $${\mathcal {A}}$$ A to a constrained setting. The X-circuits serve as the main tool in our analysis and exhibit particularly rich combinatorial properties for polyhedral X, in which case the set of X-circuits is comprised of one-dimensional cones of suitable polyhedral fans. The framework of X-circuits transparently reveals when an X-nonnegative conditional AM/GM-exponential can in fact be further decomposed as a sum of simpler X-nonnegative signomials. We develop a duality theory for X-circuits with connections to geometry of sets that are convex according to the geometric mean. This theory provides an optimal power cone reconstruction of conditional SAGE signomials when X is polyhedral. In conjunction with a notion of reduced X-circuits, the duality theory facilitates a characterization of the extreme rays of conditional SAGE cones. Since signomials under logarithmic variable substitutions give polynomials, our results also have implications for nonnegative polynomials and polynomial optimization.

[1]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[2]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[3]  B. Reznick Forms derived from the arithmetic-geometric inequality , 1989 .

[4]  László Lovász,et al.  The Shapes of Polyhedra , 1990, Math. Oper. Res..

[5]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[6]  G. Ziegler Lectures on Polytopes , 1994 .

[7]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[8]  V. Powers,et al.  An algorithm for sums of squares of real polynomials , 1998 .

[9]  Constantin P. Niculescu Convexity according to the geometric mean , 2000 .

[10]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[11]  J. Matkowski,et al.  On Mulholland’s inequality , 2002 .

[12]  H. Koeppl,et al.  Global injectivity and multiple equilibria in uni- and bi-molecular reaction networks , 2012 .

[13]  Ivan Izmestiev,et al.  Shapes of polyhedra, mixed volumes and hyperbolic geometry , 2013, 1310.1560.

[14]  M. Özdemir,et al.  A note on geometrically convex functions , 2014 .

[15]  Chinwendu Enyioha,et al.  Optimal Resource Allocation for Network Protection Against Spreading Processes , 2013, IEEE Transactions on Control of Network Systems.

[16]  Timo de Wolff,et al.  Amoebas, nonnegative polynomials and sums of squares supported on circuits , 2014, 1402.0462.

[17]  Janez Povh,et al.  On an extension of Pólya’s Positivstellensatz , 2015, J. Glob. Optim..

[18]  Parikshit Shah,et al.  Relative Entropy Relaxations for Signomial Optimization , 2014, SIAM J. Optim..

[19]  Alicia Dickenstein,et al.  Sign Conditions for Injectivity of Generalized Polynomial Maps with Applications to Chemical Reaction Networks and Real Algebraic Geometry , 2013, Found. Comput. Math..

[20]  George J. Pappas,et al.  Optimal Resource Allocation for Control of Networked Epidemic Models , 2017, IEEE Transactions on Control of Network Systems.

[21]  Timo de Wolff,et al.  A Positivstellensatz for Sums of Nonnegative Circuit Polynomials , 2016, SIAM J. Appl. Algebra Geom..

[22]  Mark Drela,et al.  Turbofan Engine Sizing and Tradeoff Analysis via Signomial Programming , 2017 .

[23]  Paul N. Beuchat,et al.  The REPOP Toolbox: Tackling Polynomial Optimization Using Relative Entropy Relaxations , 2017 .

[24]  Timo de Wolff,et al.  Optimization Over the Boolean Hypercube Via Sums of Nonnegative Circuit Polynomials , 2018, Foundations of Computational Mathematics.

[25]  V. Chandrasekaran,et al.  Newton Polytopes and Relative Entropy Optimization , 2018, Foundations of Computational Mathematics.

[26]  Jie Wang Nonnegative Polynomials and Circuit Polynomials , 2018, SIAM J. Appl. Algebra Geom..

[27]  Berk Ozturk,et al.  Optimal Aircraft Design Deicions under Uncertainty via Robust Signomial Programming , 2019, AIAA Aviation 2019 Forum.

[28]  D. Papp Duality of sum of nonnegative circuit polynomials and optimal SONC bounds. , 2019, 1912.04718.

[29]  Josef Hofbauer,et al.  On the Bijectivity of Families of Exponential/Generalized Polynomial Maps , 2018, SIAM J. Appl. Algebra Geom..

[30]  Stephen P. Boyd,et al.  Disciplined geometric programming , 2018, Optimization Letters.

[31]  J. M. Rojas,et al.  Tropical varieties for exponential sums , 2014, Mathematische Annalen.

[32]  Timo de Wolff,et al.  The Algebraic Boundary of the Sonc-Cone , 2019, SIAM J. Appl. Algebra Geom..

[33]  Gennadiy Averkov,et al.  Optimal Size of Linear Matrix Inequalities in Semidefinite Approaches to Polynomial Optimization , 2018, SIAM J. Appl. Algebra Geom..

[34]  A Positivstellensatz for Conditional SAGE Signomials , 2020, 2003.03731.

[35]  S. Pearson Moments , 2020, Narrative inquiry in bioethics.

[36]  Jie Wang,et al.  A second order cone characterization for sums of nonnegative circuits , 2019, ISSAC.

[37]  T. Theobald,et al.  The S -cone and a primal-dual view on second-order representability , 2020 .

[38]  T. Theobald,et al.  The $${\mathcal {S}}$$ S -cone and a primal-dual view on second-order representability , 2020, 2003.09495.

[39]  Thorsten Theobald,et al.  A unified framework of SAGE and SONC polynomials and its duality theory , 2019, Math. Comput..

[40]  J. Voight Discriminants , 2021, Graduate Texts in Mathematics.

[41]  Riley Murray,et al.  Algebraic Perspectives on Signomial Optimization , 2021, SIAM J. Appl. Algebra Geom..

[42]  Erling D. Andersen,et al.  A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimization , 2021, Mathematical Programming.

[43]  Thorsten Theobald,et al.  Sublinear Circuits for Polyhedral Sets , 2021, Vietnam Journal of Mathematics.

[44]  Adam Wierman,et al.  Signomial and polynomial optimization via relative entropy and partial dualization , 2019, Mathematical Programming Computation.