Sublinear circuits and the constrained signomial nonnegativity problem
暂无分享,去创建一个
[1] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[2] Katta G. Murty,et al. Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..
[3] B. Reznick. Forms derived from the arithmetic-geometric inequality , 1989 .
[4] László Lovász,et al. The Shapes of Polyhedra , 1990, Math. Oper. Res..
[5] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .
[6] G. Ziegler. Lectures on Polytopes , 1994 .
[7] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[8] V. Powers,et al. An algorithm for sums of squares of real polynomials , 1998 .
[9] Constantin P. Niculescu. Convexity according to the geometric mean , 2000 .
[10] Arkadi Nemirovski,et al. Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.
[11] J. Matkowski,et al. On Mulholland’s inequality , 2002 .
[12] H. Koeppl,et al. Global injectivity and multiple equilibria in uni- and bi-molecular reaction networks , 2012 .
[13] Ivan Izmestiev,et al. Shapes of polyhedra, mixed volumes and hyperbolic geometry , 2013, 1310.1560.
[14] M. Özdemir,et al. A note on geometrically convex functions , 2014 .
[15] Chinwendu Enyioha,et al. Optimal Resource Allocation for Network Protection Against Spreading Processes , 2013, IEEE Transactions on Control of Network Systems.
[16] Timo de Wolff,et al. Amoebas, nonnegative polynomials and sums of squares supported on circuits , 2014, 1402.0462.
[17] Janez Povh,et al. On an extension of Pólya’s Positivstellensatz , 2015, J. Glob. Optim..
[18] Parikshit Shah,et al. Relative Entropy Relaxations for Signomial Optimization , 2014, SIAM J. Optim..
[19] Alicia Dickenstein,et al. Sign Conditions for Injectivity of Generalized Polynomial Maps with Applications to Chemical Reaction Networks and Real Algebraic Geometry , 2013, Found. Comput. Math..
[20] George J. Pappas,et al. Optimal Resource Allocation for Control of Networked Epidemic Models , 2017, IEEE Transactions on Control of Network Systems.
[21] Timo de Wolff,et al. A Positivstellensatz for Sums of Nonnegative Circuit Polynomials , 2016, SIAM J. Appl. Algebra Geom..
[22] Mark Drela,et al. Turbofan Engine Sizing and Tradeoff Analysis via Signomial Programming , 2017 .
[23] Paul N. Beuchat,et al. The REPOP Toolbox: Tackling Polynomial Optimization Using Relative Entropy Relaxations , 2017 .
[24] Timo de Wolff,et al. Optimization Over the Boolean Hypercube Via Sums of Nonnegative Circuit Polynomials , 2018, Foundations of Computational Mathematics.
[25] V. Chandrasekaran,et al. Newton Polytopes and Relative Entropy Optimization , 2018, Foundations of Computational Mathematics.
[26] Jie Wang. Nonnegative Polynomials and Circuit Polynomials , 2018, SIAM J. Appl. Algebra Geom..
[27] Berk Ozturk,et al. Optimal Aircraft Design Deicions under Uncertainty via Robust Signomial Programming , 2019, AIAA Aviation 2019 Forum.
[28] D. Papp. Duality of sum of nonnegative circuit polynomials and optimal SONC bounds. , 2019, 1912.04718.
[29] Josef Hofbauer,et al. On the Bijectivity of Families of Exponential/Generalized Polynomial Maps , 2018, SIAM J. Appl. Algebra Geom..
[30] Stephen P. Boyd,et al. Disciplined geometric programming , 2018, Optimization Letters.
[31] J. M. Rojas,et al. Tropical varieties for exponential sums , 2014, Mathematische Annalen.
[32] Timo de Wolff,et al. The Algebraic Boundary of the Sonc-Cone , 2019, SIAM J. Appl. Algebra Geom..
[33] Gennadiy Averkov,et al. Optimal Size of Linear Matrix Inequalities in Semidefinite Approaches to Polynomial Optimization , 2018, SIAM J. Appl. Algebra Geom..
[34] A Positivstellensatz for Conditional SAGE Signomials , 2020, 2003.03731.
[35] S. Pearson. Moments , 2020, Narrative inquiry in bioethics.
[36] Jie Wang,et al. A second order cone characterization for sums of nonnegative circuits , 2019, ISSAC.
[37] T. Theobald,et al. The S -cone and a primal-dual view on second-order representability , 2020 .
[38] T. Theobald,et al. The $${\mathcal {S}}$$ S -cone and a primal-dual view on second-order representability , 2020, 2003.09495.
[39] Thorsten Theobald,et al. A unified framework of SAGE and SONC polynomials and its duality theory , 2019, Math. Comput..
[40] J. Voight. Discriminants , 2021, Graduate Texts in Mathematics.
[41] Riley Murray,et al. Algebraic Perspectives on Signomial Optimization , 2021, SIAM J. Appl. Algebra Geom..
[42] Erling D. Andersen,et al. A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimization , 2021, Mathematical Programming.
[43] Thorsten Theobald,et al. Sublinear Circuits for Polyhedral Sets , 2021, Vietnam Journal of Mathematics.
[44] Adam Wierman,et al. Signomial and polynomial optimization via relative entropy and partial dualization , 2019, Mathematical Programming Computation.