Ultrasonic methods for the detection of near surface fatigue damage

[1]  F. Berto,et al.  A unified approach to simulate the creep-fatigue crack growth in P91 steel at elevated temperature under SSY and SSC conditions , 2021 .

[2]  P. Nagy,et al.  Attenuation of Rayleigh waves due to surface roughness. , 2021, The Journal of the Acoustical Society of America.

[3]  K. Nikbin,et al.  Finite element analysis of creep-fatigue-oxidation interactions in 316H stainless steel , 2020 .

[4]  Hong-wei Hu,et al.  Experimental investigation of material nonlinearity using the Rayleigh surface waves excited and detected by angle beam wedge transducers , 2018, Ultrasonics.

[5]  Qi Wu,et al.  Nonlinear ultrasonic detection for evaluating fatigue crack in metal plate , 2018, Structural Health Monitoring.

[6]  V. Sundararaghavan,et al.  A method to predict fatigue crack initiation in metals using dislocation dynamics , 2017 .

[7]  H. Jing,et al.  Finite element simulation of creep-fatigue crack growth behavior for P91 steel at 625 °C considering creep-fatigue interaction , 2017 .

[8]  A. Pineau,et al.  Probabilistic approaches to fatigue with special emphasis on initiation from inclusions , 2016 .

[9]  F. Cegla,et al.  The effect of corrosion induced surface morphology changes on ultrasonically monitored corrosion rates , 2016 .

[10]  J. Sietsma,et al.  Quantification of dislocation structures from anelastic deformation behaviour , 2016 .

[11]  A. Wilkinson,et al.  Evolution of intragranular stresses and dislocation densities during cyclic deformation of polycrystalline copper , 2015 .

[12]  D. Eifler,et al.  Fatigue Monitoring of Austenitic Steels with Electromagnetic Acoustic Transducers (EMATs) , 2015 .

[13]  Peter Huthwaite,et al.  Accelerated finite element elastodynamic simulations using the GPU , 2014, J. Comput. Phys..

[14]  A. Wilkinson,et al.  Measurement of geometrically necessary dislocation density with high resolution electron backscatter diffraction: effects of detector binning and step size. , 2013, Ultramicroscopy.

[15]  Yishou Wang,et al.  In-situ quantitative monitoring of fatigue crack using fastest time of flight diffraction method , 2012 .

[16]  Prabhu Rajagopal,et al.  On the use of absorbing layers to simulate the propagation of elastic waves in unbounded isotropic media using commercially available Finite Element packages , 2012 .

[17]  I. Sevostianov,et al.  Evaluation of the Growth of Dislocations Density in Fatigue Loading Process via Electrical Resistivity Measurements , 2012, International Journal of Fracture.

[18]  D. Vasilev Alternative Approaches to Measure a Dislocation Density , 2012 .

[19]  Laurence J. Jacobs,et al.  Experimental study of nonlinear Rayleigh wave propagation in shot-peened aluminum plates—Feasibility of measuring residual stress , 2011 .

[20]  P. Gandhi,et al.  Improved Imaging of Fatigue Crack Profile in Thick Cruciform Samples Using Ultrasonic Phased Array Models , 2010 .

[21]  Wieslaw J. Staszewski,et al.  Comparative study of nonlinear acoustic and Lamb wave techniques for fatigue crack detection in metallic structures , 2008 .

[22]  Krishnan Balasubramaniam,et al.  Phased Array Ultrasonic Measurement of Fatigue Crack Growth Profiles in Stainless Steel Pipes , 2007 .

[23]  H. Ogi,et al.  Ultrasonic attenuation and microstructural evolution throughout tension–compression fatigue of a low-carbon steel , 2006 .

[24]  Joon-Hyun Lee,et al.  Statistical Analysis of Casting Defects in Microstructure for Understanding the Effect on Fatigue Property of 17-4PH Stainless Steel , 2006 .

[25]  A. Maurel,et al.  Wave propagation through a random array of pinned dislocations: Velocity change and attenuation in a generalized Granato and Lücke theory , 2005 .

[26]  A. Maurel,et al.  Elastic wave propagation through a distribution of dislocations , 2005 .

[27]  A. Maurel,et al.  Elastic wave propagation through a random array of dislocations , 2004 .

[28]  A. Maurel,et al.  Scattering of an elastic wave by a single dislocation , 2004 .

[29]  Shant Kenderian,et al.  Ultrasonic monitoring of dislocations during fatigue of pearlitic rail steel , 2003 .

[30]  Homayoun Hadavinia,et al.  The prediction of crack growth in bonded joints under cyclic-fatigue loading II: analytical and finite element studies , 2003 .

[31]  H. Ogi,et al.  Acoustic study of dislocation rearrangement at later stages of fatigue: Noncontact prediction of remaining life , 2002 .

[32]  D. Apelian,et al.  Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects , 2001 .

[33]  H. Ogi,et al.  Ultrasonic attenuation monitoring of fatigue damage in low carbon steels with electromagnetic acoustic resonance (EMAR) , 2000 .

[34]  Hirotsugu Ogi,et al.  In-situ monitoring of ultrasonic attenuation during rotating bending fatigue of carbon steel with electromagnetic acoustic resonance , 2000 .

[35]  Homayoun Hadavinia,et al.  Predicting the service-life of adhesively-bonded joints , 2000 .

[36]  H. Ogi,et al.  Ultrasonic attenuation peak during fatigue of polycrystalline copper , 2000 .

[37]  S. Zwaag,et al.  The Lattice-Parameters of Austenite and Ferrite in Fe-C Alloys as Functions of Carbon Concentration and Temperature , 1993 .

[38]  Richard J. Dewhurst,et al.  Surface‐breaking fatigue crack detection using laser ultrasound , 1993 .

[39]  Jinjun Tang,et al.  MARKOV PROCESS MODEL FOR FATIGUE CRACK GROWTH , 1988 .

[40]  A. Granato,et al.  Simplified theory of dislocation damping including point-defect drag. I. Theory of drag by equidistant point defects , 1981 .

[41]  J. Newman A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading , 1981 .

[42]  W. L. Morris,et al.  Acoustic harmonic generation at unbonded interfaces and fatigue cracks , 1978 .

[43]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[44]  Toshio Mura,et al.  Continuous distribution of moving dislocations , 1963 .

[45]  A. Granato,et al.  Overdamped resonance of dislocations in copper , 1962 .

[46]  W. Wood Formation of fatigue cracks , 1958 .

[47]  N. Mott A theory of the origin of fatigue cracks , 1958 .

[48]  A. Granato,et al.  Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies , 1956 .

[49]  A. Granato,et al.  Theory of Mechanical Damping Due to Dislocations , 1956 .

[50]  E. W. C. Wilkins,et al.  Cumulative damage in fatigue , 1956 .

[51]  L. Coffin,et al.  A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal , 1954, Journal of Fluids Engineering.

[52]  W. L. Starkey,et al.  A Concept of Fatigue Damage , 1954, Journal of Fluids Engineering.

[53]  F. Nabarro The interaction of screw dislocations and sound waves , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[54]  W. T. Read,et al.  Multiplication Processes for Slow Moving Dislocations , 1950 .

[55]  O. Basquin The exponential law of endurance tests , 1910 .