Trimetallic nitride endohedral fullerenes: experimental and theoretical evidence for the M3N6+@C2n6- model.

Size doesn't matter: Metallic nitride endohedral fullerenes (MNEFs) exhibit redox properties that are not dependent on the size of the carbon cage, but on its electronic properties. These findings support the ionic model of MNEFs.

[1]  L. Echegoyen,et al.  New M(3)N@C(2n) endohedral metallofullerene families (M=Nd, Pr, Ce; n=40-53): expanding the preferential templating of the C(88) cage and approaching the C(96) cage. , 2008, Chemistry.

[2]  L. Echegoyen,et al.  The large Nd3N@C2n (40, 2007, Angewandte Chemie.

[3]  Luis Echegoyen,et al.  Gd3N@C2n (n = 40, 42, and 44): remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd3N@C88 . , 2007, Journal of the American Chemical Society.

[4]  A. Rodríguez‐Fortea,et al.  Large fullerenes stabilized by encapsulation of metallic clusters. , 2007, Chemical communications.

[5]  Jorge A. Fernández,et al.  Polyoxometalates with internal cavities: redox activity, basicity, and cation encapsulation in [Xn+P5W30O110](15-n)- Preyssler complexes, with X = Na+, Ca2+, Y3+, La3+, Ce3+, and Th4+. , 2007, Journal of the American Chemical Society.

[6]  Lothar Dunsch,et al.  Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68-98): a density functional theory study. , 2007, Journal of the American Chemical Society.

[7]  Chunru Wang,et al.  Comparative Spectroscopic and Reactivity Studies of Sc3-xYxN@C80 (x = 0−3) , 2007 .

[8]  Marilyn M. Olmstead,et al.  Isolation and Structural Characterization of a Family of Endohedral Fullerenes Including the Large, Chiral Cage Fullerenes Tb3N@C88 and Tb3N@C86 as well as the Ih and D5h Isomers of Tb3N@C80 , 2007 .

[9]  Alexey Popov,et al.  Gadolinium-based mixed-metal nitride clusterfullerenes Gd(x)Sc(3-x)N@C80 (x=1, 2). , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[10]  E. Zhang,et al.  C80 encaging four different atoms: the synthesis, isolation, and characterizations of ScYErN@C80. , 2006, The journal of physical chemistry. B.

[11]  A. Balch,et al.  Preparation and structure of CeSc2N@C80: an icosahedral carbon cage enclosing an acentric CeSc2N unit with buried f electron spin. , 2006, Journal of the American Chemical Society.

[12]  Tianming Zuo,et al.  Structure and enhanced reactivity rates of the D5h Sc3N@C80 and Lu3N@C80 metallofullerene isomers: the importance of the pyracylene motif. , 2006, Journal of the American Chemical Society.

[13]  L. Echegoyen,et al.  Unexpected chemical and electrochemical properties of M3N@C80 (M = Sc, Y, Er). , 2006, Journal of the American Chemical Society.

[14]  J. Campanera,et al.  General rule for the stabilization of fullerene cages encapsulating trimetallic nitride templates. , 2005, Angewandte Chemie.

[15]  M. Knupfer,et al.  The electronic and vibrational structure of endohedral Tm3N@C80 (I) fullerene--proof of an encaged Tm3+. , 2005, The journal of physical chemistry. A.

[16]  L. Echegoyen,et al.  A simple isomeric separation of D5h and Ih Sc3N@C80 by selective chemical oxidation. , 2005, Journal of the American Chemical Society.

[17]  Shangfeng Yang,et al.  A large family of dysprosium-based trimetallic nitride endohedral fullerenes: Dy3N@C2n (39 , 2005, The journal of physical chemistry. B.

[18]  M. Krause,et al.  Gadoliniumnitrid Gd3N in Kohlenstoffkäfigen: der Einfluss von Clustergröße und Bindungsstärke , 2005 .

[19]  M. Krause,et al.  Gadolinium nitride Gd3N in carbon cages: the influence of cluster size and bond strength. , 2005, Angewandte Chemie.

[20]  Matthias Krause,et al.  Expanding the world of endohedral fullerenes--the Tm3N@C2n (39< or =n< or =43) clusterfullerene family. , 2005, Chemistry.

[21]  S. P. Rath,et al.  Pyramidalization of Gd3N inside a C80 cage. The synthesis and structure of Gd3N@C80. , 2004, Chemical communications.

[22]  J. Noack,et al.  Endohedral nitride cluster fullerenes: Formation and spectroscopic analysis of L3−xMxN@C2n (0≤x≤3; N=39,40) , 2004 .

[23]  J. Campanera,et al.  Bonding within the Endohedral Fullerenes Sc3N@C78 and Sc3N@C80 as Determined by Density Functional Calculations and Reexamination of the Crystal Structure of {Sc3N@C78}·Co(OEP)}·1.5(C6H6)·0.3(CHCl3) , 2002 .

[24]  H. Dorn,et al.  Lutetium-based Trimetallic Nitride Endohedral Metallofullerenes: New Contrast Agents , 2002 .

[25]  M. Knupfer,et al.  Electronic structure of pristine and intercalated Sc 3 N@C 80 metallofullerene , 2002 .

[26]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[27]  E. Hajdu,et al.  Materials science: A stable non-classical metallofullerene family , 2000, Nature.

[28]  Marilyn M. Olmstead,et al.  Isolation and Crystallographic Characterization of ErSc2N@C80: an Endohedral Fullerene Which Crystallizes with Remarkable Internal Order , 2000 .

[29]  A. Fisher,et al.  Small-bandgap endohedral metallofullerenes in high yield and purity , 1999, Nature.