Effective Mobility Enhancement in Al2O3/InSb/Si Quantum Well Metal Oxide Semiconductor Field Effect Transistors for Thin InSb Channel Layers
暂无分享,去创建一个
Koichi Maezawa | Takashi Mizutani | Masayuki Mori | Eiji Miyazaki | Taihei Ito | Azusa Kadoda | Koji Nakayama | Yuichiro Yasui
[1] D. Dunstan,et al. Equilibrium critical thickness of epitaxial strained layers in the {111} orientations , 1997 .
[2] Yoshiaki Nakano,et al. Thin Body III–V-Semiconductor-on-Insulator Metal–Oxide–Semiconductor Field-Effect Transistors on Si Fabricated Using Direct Wafer Bonding , 2009 .
[3] S. Khamseh,et al. Effects of Deposition Conditions of First InSb Layer on Electrical Properties of n-Type InSb Films Grown With Two-Step Growth Method via InSb Bilayer , 2011 .
[4] N. Taoka,et al. Electron Mobility Enhancement of Extremely Thin Body In0.7Ga0.3As-on-Insulator Metal–Oxide–Semiconductor Field-Effect Transistors on Si Substrates by Metal–Oxide–Semiconductor Interface Buffer Layers , 2011 .
[5] J. W. Matthews,et al. Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .
[6] Yoshiaki Nakano,et al. III–V/Ge High Mobility Channel Integration of InGaAs n-Channel and Ge p-Channel Metal–Oxide–Semiconductor Field-Effect Transistors with Self-Aligned Ni-Based Metal Source/Drain Using Direct Wafer Bonding , 2012 .
[7] M. Takenaka,et al. High Electron Mobility Metal–Insulator–Semiconductor Field-Effect Transistors Fabricated on (111)-Oriented InGaAs Channels , 2009 .
[8] Characterization of Al2O3/InSb/Si MOS diodes having various InSb thicknesses grown on Si(1 1 1) substrates , 2012 .
[9] T. Anan,et al. Critical layer thickness on (111)B‐oriented InGaAs/GaAs heteroepitaxy , 1992 .
[10] Shinichi Takagi,et al. Fabrication of III–V on Insulator Structures on Si Using Microchannel Epitaxy with a Two-Step Growth Technique , 2007 .
[11] S. Datta,et al. Ultrahigh-Speed 0.5 V Supply Voltage $\hbox{In}_{0.7} \hbox{Ga}_{0.3}\hbox{As}$ Quantum-Well Transistors on Silicon Substrate , 2007, IEEE Electron Device Letters.
[12] N. Waldron,et al. Heterogeneous Integration and Fabrication of III-V MOS Devices in a 200mm Processing Environment , 2011 .
[13] M. Carroll,et al. Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping , 2007 .
[14] H.C. Lin,et al. Submicrometer Inversion-Type Enhancement-Mode InGaAs MOSFET With Atomic-Layer-Deposited $\hbox{Al}_{2}\hbox{O}_{3}$ as Gate Dielectric , 2007, IEEE Electron Device Letters.
[15] Yoshiaki Nakano,et al. Dislocation-Free InGaAs on Si(111) Using Micro-Channel Selective-Area Metalorganic Vapor Phase Epitaxy , 2008 .
[16] Suman Datta,et al. Heterogeneous InSb quantum well transistors on silicon for ultra-high speed, low power logic applications , 2007 .
[17] Peide D. Ye,et al. Main determinants for III–V metal-oxide-semiconductor field-effect transistors (invited) , 2008 .
[18] Yasuyuki Miyamoto,et al. InP/InGaAs Composite Metal–Oxide–Semiconductor Field-Effect Transistors with Regrown Source and Al2O3 Gate Dielectric Exhibiting Maximum Drain Current Exceeding 1.3 mA/µm , 2011 .
[19] T. Ma,et al. Properties of InAs metal-oxide-semiconductor structures with atomic-layer-deposited Al2O3 Dielectric , 2008 .
[20] J. Alamo. Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.
[21] K. Maezawa,et al. High Quality InSb Films Grown on Si(111) Substrate via InSb Bi-Layer , 2009 .
[22] R. Chau,et al. Benchmarking nanotechnology for high-performance and low-power logic transistor applications , 2004, IEEE Transactions on Nanotechnology.