Effective Mobility Enhancement in Al2O3/InSb/Si Quantum Well Metal Oxide Semiconductor Field Effect Transistors for Thin InSb Channel Layers

Al2O3/InSb/Si quantum well MOSFETs were fabricated with a thin InSb channel layer grown directly on Si(111) substrates. The InSb thickness ranged from 6 to 25 nm. These thicknesses are close to the critical thickness of InSb on Si, when the InSb layer is grown using a special technique called surface reconstruction controlled epitaxy, which reduces the lattice mismatch from 19.3 to 3.3% by rotating the in-plane InSb axis by 30° with respect to the Si(111) substrate. Good FET characteristics were observed for 10 nm InSb channel devices. The dependence of the device properties on InSb channel thickness was investigated. The enhancement of effective mobility for thin InSb channel devices was demonstrated, which indicates the crystal quality improvement when approaching the critical thickness.

[1]  D. Dunstan,et al.  Equilibrium critical thickness of epitaxial strained layers in the {111} orientations , 1997 .

[2]  Yoshiaki Nakano,et al.  Thin Body III–V-Semiconductor-on-Insulator Metal–Oxide–Semiconductor Field-Effect Transistors on Si Fabricated Using Direct Wafer Bonding , 2009 .

[3]  S. Khamseh,et al.  Effects of Deposition Conditions of First InSb Layer on Electrical Properties of n-Type InSb Films Grown With Two-Step Growth Method via InSb Bilayer , 2011 .

[4]  N. Taoka,et al.  Electron Mobility Enhancement of Extremely Thin Body In0.7Ga0.3As-on-Insulator Metal–Oxide–Semiconductor Field-Effect Transistors on Si Substrates by Metal–Oxide–Semiconductor Interface Buffer Layers , 2011 .

[5]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[6]  Yoshiaki Nakano,et al.  III–V/Ge High Mobility Channel Integration of InGaAs n-Channel and Ge p-Channel Metal–Oxide–Semiconductor Field-Effect Transistors with Self-Aligned Ni-Based Metal Source/Drain Using Direct Wafer Bonding , 2012 .

[7]  M. Takenaka,et al.  High Electron Mobility Metal–Insulator–Semiconductor Field-Effect Transistors Fabricated on (111)-Oriented InGaAs Channels , 2009 .

[8]  Characterization of Al2O3/InSb/Si MOS diodes having various InSb thicknesses grown on Si(1 1 1) substrates , 2012 .

[9]  T. Anan,et al.  Critical layer thickness on (111)B‐oriented InGaAs/GaAs heteroepitaxy , 1992 .

[10]  Shinichi Takagi,et al.  Fabrication of III–V on Insulator Structures on Si Using Microchannel Epitaxy with a Two-Step Growth Technique , 2007 .

[11]  S. Datta,et al.  Ultrahigh-Speed 0.5 V Supply Voltage $\hbox{In}_{0.7} \hbox{Ga}_{0.3}\hbox{As}$ Quantum-Well Transistors on Silicon Substrate , 2007, IEEE Electron Device Letters.

[12]  N. Waldron,et al.  Heterogeneous Integration and Fabrication of III-V MOS Devices in a 200mm Processing Environment , 2011 .

[13]  M. Carroll,et al.  Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping , 2007 .

[14]  H.C. Lin,et al.  Submicrometer Inversion-Type Enhancement-Mode InGaAs MOSFET With Atomic-Layer-Deposited $\hbox{Al}_{2}\hbox{O}_{3}$ as Gate Dielectric , 2007, IEEE Electron Device Letters.

[15]  Yoshiaki Nakano,et al.  Dislocation-Free InGaAs on Si(111) Using Micro-Channel Selective-Area Metalorganic Vapor Phase Epitaxy , 2008 .

[16]  Suman Datta,et al.  Heterogeneous InSb quantum well transistors on silicon for ultra-high speed, low power logic applications , 2007 .

[17]  Peide D. Ye,et al.  Main determinants for III–V metal-oxide-semiconductor field-effect transistors (invited) , 2008 .

[18]  Yasuyuki Miyamoto,et al.  InP/InGaAs Composite Metal–Oxide–Semiconductor Field-Effect Transistors with Regrown Source and Al2O3 Gate Dielectric Exhibiting Maximum Drain Current Exceeding 1.3 mA/µm , 2011 .

[19]  T. Ma,et al.  Properties of InAs metal-oxide-semiconductor structures with atomic-layer-deposited Al2O3 Dielectric , 2008 .

[20]  J. Alamo Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.

[21]  K. Maezawa,et al.  High Quality InSb Films Grown on Si(111) Substrate via InSb Bi-Layer , 2009 .

[22]  R. Chau,et al.  Benchmarking nanotechnology for high-performance and low-power logic transistor applications , 2004, IEEE Transactions on Nanotechnology.