Design of Coupled Harmonic Oscillators for Synchronization and Coordination

Synchronization and coordination of coupled oscillators are fundamental behaviors in complex dynamical systems. This paper considers the design of coupled harmonic oscillators to generate an orbitally stable limit cycle of prescribed oscillation profile. Based on the Floquet theory and averaging techniques, necessary and sufficient conditions are obtained for nonlinear coupling functions to achieve local exponential convergence to a desired orbit. Unlike globally convergent methods based on contraction analysis, the result applies to oscillators without flow invariance properties. Insights into coordination mechanisms are gained through interpretation of the coupling structure as a directed graph. The theory is illustrated by simple tutorial examples.

[1]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[2]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[3]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[4]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[5]  J. Doyle Synthesis of robust controllers and filters , 1983, The 22nd IEEE Conference on Decision and Control.

[6]  Ilse C. F. Ipsen,et al.  Perturbation Bounds for Determinants and Characteristic Polynomials , 2008, SIAM J. Matrix Anal. Appl..

[7]  Frank Allgöwer,et al.  An internal model principle is necessary and sufficient for linear output synchronization , 2011, Autom..

[8]  Joseph Cheriyan,et al.  Random Weighted Laplacians, Lovász minimum digraphs and finding minimum separators , 1993, SODA '93.

[9]  Hyungbo Shim,et al.  Output Consensus of Heterogeneous Uncertain Linear Multi-Agent Systems , 2011, IEEE Transactions on Automatic Control.

[10]  Tetsuya Iwasaki,et al.  Multivariable harmonic balance for central pattern generators , 2008, Autom..

[11]  Rodolphe Sepulchre,et al.  Synchronization in networks of identical linear systems , 2009, Autom..

[12]  Li︠u︡dmila I︠A︡kovlevna Adrianova Introduction to linear systems of differential equations , 1995 .

[13]  G. Ermentrout,et al.  Frequency Plateaus in a Chain of Weakly Coupled Oscillators, I. , 1984 .

[14]  Tetsuya Iwasaki,et al.  Circulant Synthesis of Central Pattern Generators With Application to Control of Rectifier Systems , 2008, IEEE Transactions on Automatic Control.

[15]  J. Sepulchre ENERGY BARRIERS IN COUPLED OSCILLATORS: FROM DISCRETE KINKS TO DISCRETE BREATHERS , 2003 .

[16]  Tetsuya Iwasaki,et al.  Orbital stability analysis of coupled harmonic oscillators , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[17]  Wei Ren,et al.  Synchronization of coupled harmonic oscillators with local interaction , 2008, Autom..

[18]  Hideaki Tanaka,et al.  Stability Analysis of Systems With Generalized Frequency Variables , 2014, IEEE Transactions on Automatic Control.

[19]  Stephen Hailes,et al.  Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight , 2014, Nature.

[20]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1997, IEEE Trans. Autom. Control..

[21]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[22]  Tetsuya Iwasaki,et al.  Multivariable harmonic balance analysis of the neuronal oscillator for leech swimming , 2008, Journal of Computational Neuroscience.

[23]  John E. Bronlund,et al.  Review of the human masticatory system and masticatory robotics , 2008 .

[24]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2005, IEEE Transactions on Automatic Control.

[25]  Alexander L. Fradkov Exploring nonlinearity by feedback , 1999 .

[26]  E. Izhikevich Weakly Coupled Oscillators , 2006 .

[27]  F. Lacquaniti,et al.  From Spinal Central Pattern Generators to Cortical Network: Integrated BCI for Walking Rehabilitation , 2012, Neural plasticity.

[28]  Ali Saberi,et al.  Output synchronization for heterogeneous networks of introspective right‐invertible agents , 2014 .

[29]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[30]  H. Bergman,et al.  Pathological synchronization in Parkinson's disease: networks, models and treatments , 2007, Trends in Neurosciences.

[31]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[32]  Randal W. Beard,et al.  Consensus seeking in multiagent systems under dynamically changing interaction topologies , 2005, IEEE Transactions on Automatic Control.

[33]  R. Skelton,et al.  The XY-centring algorithm for the dual LMI problem: a new approach to fixed-order control design , 1995 .

[34]  P. Olver Nonlinear Systems , 2013 .

[35]  Tetsuya Iwasaki,et al.  Biological clockwork underlying adaptive rhythmic movements , 2014, Proceedings of the National Academy of Sciences.

[36]  T. Carroll,et al.  MASTER STABILITY FUNCTIONS FOR SYNCHRONIZED COUPLED SYSTEMS , 1999 .

[37]  Jean-Jacques E. Slotine,et al.  Stable concurrent synchronization in dynamic system networks , 2005, Neural Networks.

[38]  Florian Dörfler,et al.  Synchronization in complex networks of phase oscillators: A survey , 2014, Autom..

[39]  Mihailo R. Jovanovic,et al.  Synchronization of diffusively-coupled limit cycle oscillators , 2013, Autom..

[40]  R. Brockett Finite Dimensional Linear Systems , 2015 .

[41]  J. Hauser,et al.  Converse Lyapunov functions for exponentially stable periodic orbits , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[42]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .