Two polyphosphatidylinositide metabolites control two K+ currents in a neuronal cell

[1]  Robert C. Malenka,et al.  Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells , 1986, Nature.

[2]  M. Nirenberg,et al.  Bradykinin-activated transmembrane signals are coupled via No or Ni to production of inositol 1,4,5-trisphosphate, a second messenger in NG108-15 neuroblastoma-glioma hybrid cells. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. Nicoll,et al.  Phorbol esters mimic some cholinergic actions in hippocampal pyramidal neurons , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  M. Watanabe,et al.  Blockade of Ca‐activated K conductance by apamin in rat sympathetic neurones , 1986, British journal of pharmacology.

[5]  N. Dascal,et al.  Acetylcholine and phorbol esters inhibit potassium currents evoked by adenosine and cAMP in Xenopus oocytes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[6]  R. Nicoll,et al.  Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[7]  S. Snyder,et al.  Protein kinase C regulates ionic conductance in hippocampal pyramidal neurons: electrophysiological effects of phorbol esters. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Y. Nozawa,et al.  Bradykinin‐induced transient accumulation of inositol trisphosphate in neuron‐like cell line NG 108‐15 cells , 1985, FEBS letters.

[9]  Y. Oron,et al.  Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes , 1985, Nature.

[10]  Michael J. Berridge,et al.  Inositol trisphosphate, a novel second messenger in cellular signal transduction , 1984, Nature.

[11]  K. Kuba,et al.  (+)-Tubocurarine blocks the Ca2+-dependent K+-channel of the bullfrog sympathetic ganglion cell , 1984, Brain Research.

[12]  Y. Nishizuka The role of protein kinase C in cell surface signal transduction and tumour promotion , 1984, Nature.

[13]  H. Sul,et al.  Cloning of cDNA sequences for murine ATP-citrate lyase. Construction of recombinant plasmids using an immunopurified mRNA template and evidence for the nutritional regulation of ATP-citrate lyase mRNA content in mouse liver. , 1984, The Journal of biological chemistry.

[14]  A. Marty Ca2+-dependent K+ channels with large unitary conductance , 1983, Trends in Neurosciences.

[15]  D. Jenkinson,et al.  Calcium-activated potassium channels in liver cells. , 1983, Cell calcium.

[16]  M. Lazdunski,et al.  Apamin, a neurotoxin specific for one class of Ca2+-dependent K+ channels. , 1983, Cell calcium.

[17]  N. Busis,et al.  Modulation of synapse formation by cyclic adenosine monophosphate. , 1983, Science.

[18]  D. A. Brown,et al.  Pharmacological inhibition of the M‐current , 1982, The Journal of physiology.

[19]  G. Reiser,et al.  Bradykinin induces hyperpolarizations in rat glioma cells and in neuroblastoma × glioma hybrid cells , 1982, Brain Research.

[20]  D. A. Brown,et al.  Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurones , 1982, Nature.

[21]  Gary Yellen,et al.  Single Ca2+-activated nonselective cation channels in neuroblastoma , 1982, Nature.

[22]  M. Lazdunski,et al.  Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Fishman,et al.  Potassium current suppression by quinidine reveals additional calcium currents in neuroblastoma cells. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[24]  D. A. Brown,et al.  Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone , 1980, Nature.

[25]  K. Dunlap,et al.  Kinase C activator 1,2-oleoylacetylglycerol attenuates voltage-dependent calcium current in sensory neurons. , 1986, Proceedings of the National Academy of Sciences of the United States of America.