Design and Analysis of Microarray Experiments for Pharmacogenomics

7.1 Potential uses of biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7.2 Clinical uses of genetic profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7.3 Two stages of pharmacogenomic development . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7.4 Multiplicity in pharmacogenomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7.5 Designing pharmacogenomic studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7.6 Analyzing microarray data by modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7.7 A proof of concept experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.8 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

[1]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[2]  James O. Berger,et al.  Statistical Decision Theory and Bayesian Analysis, Second Edition , 1985 .

[3]  Pierre R. Bushel,et al.  Assessing Gene Significance from cDNA Microarray Expression Data via Mixed Models , 2001, J. Comput. Biol..

[4]  Yoonkyung Lee,et al.  Determination of Sample Size for Validation Study in Pharmacogenomics , 2010 .

[5]  M. J. van der Laan,et al.  Augmentation Procedures for Control of the Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives , 2004, Statistical applications in genetics and molecular biology.

[6]  K. Pollard,et al.  Resampling-based Multiple Testing: Asymptotic Control of Type I Error and Applications to Gene Expression Data , 2003 .

[7]  A. Genz,et al.  Numerical computation of multivariate t-probabilities with application to power calculation of multiple contrasts , 1999 .

[8]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[9]  Gordon K Smyth,et al.  Statistical Applications in Genetics and Molecular Biology Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2011 .

[10]  G A Whitmore,et al.  Models for microarray gene expression data , 2002, Journal of biopharmaceutical statistics.

[11]  J. Hsu The Factor Analytic Approach to Simultaneous Inference in the General Linear Model , 1992 .

[12]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Alexander Gordon,et al.  Control of the mean number of false discoveries, Bonferroni and stability of multiple testing , 2007, 0709.0366.

[14]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[15]  Joseph P. Romano,et al.  Generalizations of the familywise error rate , 2005, math/0507420.

[16]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[17]  B. Weir,et al.  A systematic statistical linear modeling approach to oligonucleotide array experiments. , 2002, Mathematical biosciences.

[18]  B. Efron Correlation and Large-Scale Simultaneous Significance Testing , 2007 .

[19]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[20]  Russell D. Wolfinger,et al.  Comparison of Li-Wong and loglinear mixed models for the statistical analysis of oligonucleotide arrays , 2004, Bioinform..

[21]  J. Grossman The Likelihood Principle , 2011 .

[22]  Michael Wolf,et al.  Control of generalized error rates in multiple testing , 2007, 0710.2258.

[23]  J. Hsu,et al.  Applying the Generalized Partitioning Principle to Control the Generalized Familywise Error Rate , 2007, Biometrical journal. Biometrische Zeitschrift.

[24]  Violeta Calian,et al.  Partitioning to Uncover Conditions for Permutation Tests to Control Multiple Testing Error Rates , 2008, Biometrical journal. Biometrische Zeitschrift.