The Interplay between the Host Receptor and Influenza Virus Hemagglutinin and Neuraminidase

The hemagglutinin (HA) and neuraminidase (NA) glycoproteins of influenza A virus are responsible for the surface interactions of the virion with the host. Entry of the virus is mediated by functions of the HA: binding to cellular receptors and facilitating fusion of the virion membrane with the endosomal membrane. The HA structure contains receptor binding sites in the globular membrane distal head domains of the trimer, and the fusion machinery resides in the stem region. These sites have specific characteristics associated with subtype and host, and the differences often define species barriers. For example, avian viruses preferentially recognize α2,3-Sialic acid terminating glycans as receptors and mammalian viruses recognize α2,6-Sialic acid. The neuraminidase, or the receptor-destroying protein, cleaves the sialic acid from cellular membrane constituents and viral glycoproteins allowing for egress of nascent virions. A functional balance of activity has been demonstrated between the two glycoproteins, resulting in an optimum level of HA affinity and NA enzymatic cleavage to allow for productive infection. As more is understood about both HA and NA, the relevance for functional balance between HA and NA continues to expand, with potential implications for interspecies transmission, host adaptation, and pathogenicity.

[1]  Stephen R. Martin,et al.  Role of Neuraminidase in Influenza A(H7N9) Virus Receptor Binding , 2017, Journal of Virology.

[2]  Ryan McBride,et al.  Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity. , 2017, Cell host & microbe.

[3]  George Sugihara,et al.  Global environmental drivers of influenza , 2016, Proceedings of the National Academy of Sciences.

[4]  R. Webster,et al.  Human-Animal Interface: The Case for Influenza Interspecies Transmission. , 2016, Advances in experimental medicine and biology.

[5]  J. Pasick,et al.  Hemagglutinin-Neuraminidase Balance Influences the Virulence Phenotype of a Recombinant H5N3 Influenza A Virus Possessing a Polybasic HA0 Cleavage Site , 2015, Journal of Virology.

[6]  A. García-Sastre,et al.  Expected and Unexpected Features of the Newly Discovered Bat Influenza A-like Viruses , 2015, PLoS Pathogens.

[7]  R. Webby,et al.  Pandemic Swine H1N1 Influenza Viruses with Almost Undetectable Neuraminidase Activity Are Not Transmitted via Aerosols in Ferrets and Are Inhibited by Human Mucus but Not Swine Mucus , 2015, Journal of Virology.

[8]  D. Steinhauer,et al.  Influenza Hemagglutinin (HA) Stem Region Mutations That Stabilize or Destabilize the Structure of Multiple HA Subtypes , 2015, Journal of Virology.

[9]  D. Benton,et al.  Biophysical Measurement of the Balance of Influenza A Hemagglutinin and Neuraminidase Activities* , 2015, The Journal of Biological Chemistry.

[10]  Anice C. Lowen,et al.  Filament-Producing Mutants of Influenza A/Puerto Rico/8/1934 (H1N1) Virus Have Higher Neuraminidase Activities than the Spherical Wild-Type , 2014, PloS one.

[11]  C. Viboud,et al.  Introductions and Evolution of Human-Origin Seasonal Influenza A Viruses in Multinational Swine Populations , 2014, Journal of Virology.

[12]  David F. Smith,et al.  Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses , 2014, Proceedings of the National Academy of Sciences.

[13]  P. Collins,et al.  Enhanced human receptor binding by H5 haemagglutinins , 2014, Virology.

[14]  Anice C. Lowen,et al.  Residue 41 of the Eurasian Avian-Like Swine Influenza A Virus Matrix Protein Modulates Virion Filament Length and Efficiency of Contact Transmission , 2014, Journal of Virology.

[15]  Martin J. Deymier,et al.  The M Segment of the 2009 Pandemic Influenza Virus Confers Increased Neuraminidase Activity, Filamentous Morphology, and Efficient Contact Transmissibility to A/Puerto Rico/8/1934-Based Reassortant Viruses , 2014, Journal of Virology.

[16]  Ivana V. Yang,et al.  Muc5b is required for airway defence , 2013, Nature.

[17]  R. Schooley,et al.  Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase , 2013, Virology Journal.

[18]  I. Wilson,et al.  Hemagglutinin Receptor Specificity and Structural Analyses of Respiratory Droplet-Transmissible H5N1 Viruses , 2013, Journal of Virology.

[19]  Fei Wang,et al.  Structures and Receptor Binding of Hemagglutinins from Human-Infecting H7N9 Influenza Viruses , 2013, Science.

[20]  Anice C. Lowen,et al.  Spherical Influenza Viruses Have a Fitness Advantage in Embryonated Eggs, while Filament-Producing Strains Are Selected In Vivo , 2013, Journal of Virology.

[21]  Hua Yang,et al.  New World Bats Harbor Diverse Influenza A Viruses , 2013, PLoS pathogens.

[22]  Y. Guan,et al.  Infection of swine ex vivo tissues with avian viruses including H7N9 and correlation with glycomic analysis , 2013, Influenza and other respiratory viruses.

[23]  H. Klenk,et al.  Sialic Acid Receptors of Viruses , 2013, Topics in current chemistry.

[24]  D. Steinhauer Influenza: Pathways to human adaptation , 2013, Nature.

[25]  Y. Guan,et al.  Infectivity, Transmission, and Pathology of Human-Isolated H7N9 Influenza Virus in Ferrets and Pigs , 2013, Science.

[26]  T. Tumpey,et al.  Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice , 2013, Nature.

[27]  Noriko Kishida,et al.  Characterization of H7N9 influenza A viruses isolated from humans , 2013, Nature.

[28]  R. Webster,et al.  Increased Acid Stability of the Hemagglutinin Protein Enhances H5N1 Influenza Virus Growth in the Upper Respiratory Tract but Is Insufficient for Transmission in Ferrets , 2013, Journal of Virology.

[29]  Weizhong Yang,et al.  Biological features of novel avian influenza A (H7N9) virus , 2013, Nature.

[30]  G. Gao,et al.  Structure and receptor-binding properties of an airborne transmissible avian influenza A virus hemagglutinin H5 (VN1203mut) , 2013, Protein & Cell.

[31]  P. Collins,et al.  Receptor binding by an H7N9 influenza virus from humans , 2013, Nature.

[32]  Nathan W. Stebbins,et al.  Glycan Receptor Binding of the Influenza A Virus H7N9 Hemagglutinin , 2013, Cell.

[33]  Yoshihiro Kawaoka,et al.  Receptor binding by a ferret-transmissible H5 avian influenza virus , 2013, Nature.

[34]  G. Air,et al.  Glycomic Analysis of Human Respiratory Tract Tissues and Correlation with Influenza Virus Infection , 2013, PLoS pathogens.

[35]  D. Steinhauer,et al.  Influenza HA Subtypes Demonstrate Divergent Phenotypes for Cleavage Activation and pH of Fusion: Implications for Host Range and Adaptation , 2013, PLoS pathogens.

[36]  D. Stallknecht,et al.  Expression and distribution of sialic acid influenza virus receptors in wild birds , 2013, Avian pathology : journal of the W.V.P.A.

[37]  Alan J. Hay,et al.  Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin , 2012, Proceedings of the National Academy of Sciences.

[38]  J. Sallenave,et al.  Overexpressing mouse model demonstrates the protective role of Muc5ac in the lungs , 2012, Proceedings of the National Academy of Sciences.

[39]  D. Hill,et al.  A Periciliary Brush Promotes the Lung Health by Separating the Mucus Layer from Airway Epithelia , 2012, Science.

[40]  Theo M Bestebroer,et al.  Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets , 2012, Science.

[41]  I. Wilson,et al.  Functional Balance of the Hemagglutinin and Neuraminidase Activities Accompanies the Emergence of the 2009 H1N1 Influenza Pandemic , 2012, Journal of Virology.

[42]  Bertrand R. Caré,et al.  Rescue of a H3N2 Influenza Virus Containing a Deficient Neuraminidase Protein by a Hemagglutinin with a Low Receptor-Binding Affinity , 2012, PloS one.

[43]  A. V. D. van den Heuvel,et al.  Influenza A virus entry into cells lacking sialylated N-glycans , 2012, Proceedings of the National Academy of Sciences.

[44]  T. Kuiken,et al.  Distribution patterns of influenza virus receptors and viral attachment patterns in the respiratory and intestinal tracts of seven avian species , 2012, Veterinary Research.

[45]  K. Lindblade,et al.  A distinct lineage of influenza A virus from bats , 2012, Proceedings of the National Academy of Sciences.

[46]  Chi‐Huey Wong,et al.  Infection of Differentiated Porcine Airway Epithelial Cells by Influenza Virus: Differential Susceptibility to Infection by Porcine and Avian Viruses , 2011, PloS one.

[47]  K. Subbarao,et al.  Eurasian-Origin Gene Segments Contribute to the Transmissibility, Aerosol Release, and Morphology of the 2009 Pandemic H1N1 Influenza Virus , 2011, PLoS pathogens.

[48]  Yoshihiro Kawaoka,et al.  Amino Acid Changes in Hemagglutinin Contribute to the Replication of Oseltamivir-Resistant H1N1 Influenza Viruses , 2011, Journal of Virology.

[49]  David F. Smith,et al.  Analysis of Influenza Virus Hemagglutinin Receptor Binding Mutants with Limited Receptor Recognition Properties and Conditional Replication Characteristics , 2011, Journal of Virology.

[50]  L. Larsen,et al.  Distribution of sialic acid receptors and influenza A virus of avian and swine origin in experimentally infected pigs , 2011, Virology Journal.

[51]  Y. Guan,et al.  Hemagglutinin–neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets , 2011, Proceedings of the National Academy of Sciences.

[52]  D. Jarvis,et al.  Letter to the Glyco-Forum: Effective glycoanalysis with Maackia amurensis lectins requires a clear understanding of their binding specificities , 2011 .

[53]  David F. Smith,et al.  A Sialylated Glycan Microarray Reveals Novel Interactions of Modified Sialic Acids with Proteins and Viruses* , 2011, The Journal of Biological Chemistry.

[54]  David F. Smith,et al.  Comparison of the receptor binding properties of contemporary swine isolates and early human pandemic H1N1 isolates (Novel 2009 H1N1). , 2011, Virology.

[55]  Yohei Watanabe,et al.  Acquisition of Human-Type Receptor Binding Specificity by New H5N1 Influenza Virus Sublineages during Their Emergence in Birds in Egypt , 2011, PLoS pathogens.

[56]  C. Davis,et al.  Receptor specificity of subtype H1 influenza A viruses isolated from swine and humans in the United States. , 2011, Virology.

[57]  N. Cox,et al.  Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses. , 2011, Virology.

[58]  T. Carpenter,et al.  Emergence and Genetic Variation of Neuraminidase Stalk Deletions in Avian Influenza Viruses , 2011, PloS one.

[59]  Koichi Kato,et al.  N-Glycans from Porcine Trachea and Lung: Predominant NeuAcα2-6Gal Could Be a Selective Pressure for Influenza Variants in Favor of Human-Type Receptor , 2011, PloS one.

[60]  D. Pérez,et al.  Characterization of influenza virus sialic acid receptors in minor poultry species , 2010, Virology Journal.

[61]  Ian M. Jones,et al.  Receptor Binding Profiles of Avian Influenza Virus Hemagglutinin Subtypes on Human Cells as a Predictor of Pandemic Potential , 2010, Journal of Virology.

[62]  David F. Smith,et al.  Shotgun Glycomics: A Microarray Strategy for Functional Glycomics , 2010, Nature Methods.

[63]  A. Srinivasan,et al.  Determinants of Glycan Receptor Specificity of H2N2 Influenza A Virus Hemagglutinin , 2010, PloS one.

[64]  John Steel,et al.  Virulence-Associated Substitution D222G in the Hemagglutinin of 2009 Pandemic Influenza A(H1N1) Virus Affects Receptor Binding , 2010, Journal of Virology.

[65]  Yan Liu,et al.  Altered Receptor Specificity and Cell Tropism of D222G Hemagglutinin Mutants Isolated from Fatal Cases of Pandemic A(H1N1) 2009 Influenza Virus , 2010, Journal of Virology.

[66]  A. Dell,et al.  Glycan Analysis and Influenza A Virus Infection of Primary Swine Respiratory Epithelial Cells , 2010, The Journal of Biological Chemistry.

[67]  James Paulson,et al.  Receptor Specificity of Influenza A H3N2 Viruses Isolated in Mammalian Cells and Embryonated Chicken Eggs , 2010, Journal of Virology.

[68]  P. Rosenthal,et al.  Structural organization of a filamentous influenza A virus , 2010, Proceedings of the National Academy of Sciences.

[69]  Koichi Kato,et al.  Alterations in receptor-binding properties of swine influenza viruses of the H1 subtype after isolation in embryonated chicken eggs. , 2010, The Journal of general virology.

[70]  H. Nauwynck,et al.  Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution , 2010, Virology Journal.

[71]  S. Dunham,et al.  Comparative distribution of human and avian type sialic acid influenza receptors in the pig , 2010, BMC veterinary research.

[72]  I. Wilson,et al.  Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemic , 2009, Journal of Virology.

[73]  J. Skehel,et al.  Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957 , 2009, Proceedings of the National Academy of Sciences.

[74]  Ten Feizi,et al.  Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray , 2009, Nature Biotechnology.

[75]  Rahul Raman,et al.  Transmission and Pathogenesis of Swine-Origin 2009 A(H1N1) Influenza Viruses in Ferrets and Mice , 2009, Science.

[76]  S. Dunham,et al.  Differences in influenza virus receptors in chickens and ducks: Implications for interspecies transmission , 2009, Journal of molecular and genetic medicine : an international journal of biomedical research.

[77]  John Steel,et al.  Transmission of Influenza Virus in a Mammalian Host Is Increased by PB2 Amino Acids 627K or 627E/701N , 2009, PLoS pathogens.

[78]  Anthony S Fauci,et al.  Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. , 2008, The Journal of infectious diseases.

[79]  A. J. Bourne,et al.  Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses , 2007, Respiratory research.

[80]  John Steel,et al.  Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature , 2007, PLoS pathogens.

[81]  Chih-Jen Wei,et al.  Immunization by Avian H5 Influenza Hemagglutinin Mutants with Altered Receptor Binding Specificity , 2007, Science.

[82]  David F. Smith,et al.  Receptor binding specificity of recent human H3N2 influenza viruses , 2007, Virology Journal.

[83]  David E. Swayne,et al.  A Two-Amino Acid Change in the Hemagglutinin of the 1918 Influenza Virus Abolishes Transmission , 2007, Science.

[84]  Yan Li,et al.  Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus , 2007, Nature.

[85]  Giovanni Cardone,et al.  Influenza virus pleiomorphy characterized by cryoelectron tomography , 2006, Proceedings of the National Academy of Sciences.

[86]  David J. Stevens,et al.  Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors , 2006, Nature.

[87]  D. Normile New H5N1 Strain Emerges in Southern China , 2006, Science.

[88]  David E. Swayne,et al.  Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus , 2006, Nature.

[89]  David J. Stevens,et al.  The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design , 2006, Nature.

[90]  S. Brody,et al.  Influenza Virus Receptor Specificity and Cell Tropism in Mouse and Human Airway Epithelial Cells , 2006, Journal of Virology.

[91]  Ian A. Wilson,et al.  Structure and Receptor Specificity of the Hemagglutinin from an H5N1 Influenza Virus , 2006, Science.

[92]  Thijs Kuiken,et al.  H5N1 Virus Attachment to Lower Respiratory Tract , 2006, Science.

[93]  T. Sakai,et al.  Roles of neuraminidase in the initial stage of influenza virus infection. , 2006, Microbes and infection.

[94]  Yoshihiro Kawaoka,et al.  Avian flu: Influenza virus receptors in the human airway , 2006, Nature.

[95]  D. Pérez,et al.  Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses. , 2006, Virology.

[96]  James C Paulson,et al.  Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. , 2006, Journal of molecular biology.

[97]  D. J. Stevens,et al.  Avian and human receptor binding by hemagglutinins of influenza A viruses , 2006, Glycoconjugate Journal.

[98]  N. Bovin,et al.  Receptor-binding properties of swine influenza viruses isolated and propagated in MDCK cells. , 2005, Virus research.

[99]  Ian A. Wilson,et al.  A Single Amino Acid Substitution in 1918 Influenza Virus Hemagglutinin Changes Receptor Binding Specificity , 2005, Journal of Virology.

[100]  Prasert Auewarakul,et al.  Probable person-to-person transmission of avian influenza A (H5N1). , 2005, The New England journal of medicine.

[101]  J. Skehel,et al.  Influenza A Viruses with Mutations in the M1 Helix Six Domain Display a Wide Variety of Morphological Phenotypes , 2005, Journal of Virology.

[102]  G. Whittaker,et al.  Influenza virus entry and infection require host cell N-linked glycoprotein , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Chi-Huey Wong,et al.  Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[104]  H. Klenk,et al.  Neuraminidase Is Important for the Initiation of Influenza Virus Infection in Human Airway Epithelium , 2004, Journal of Virology.

[105]  J. Skehel,et al.  H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes. , 2004, Virology.

[106]  A. Helenius,et al.  Roles of N-linked glycans in the endoplasmic reticulum. , 2004, Annual review of biochemistry.

[107]  H. Klenk,et al.  Human and avian influenza viruses target different cell types in cultures of human airway epithelium. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[108]  W. Barclay,et al.  The M1 matrix protein controls the filamentous phenotype of influenza A virus. , 2004, Virology.

[109]  D. J. Stevens,et al.  The Structure and Receptor Binding Properties of the 1918 Influenza Hemagglutinin , 2004, Science.

[110]  A. Varki,et al.  Human-specific Regulation of α2–6-linked Sialic Acids* , 2003, Journal of Biological Chemistry.

[111]  Qingmin Wu,et al.  H9N2 influenza viruses prevalent in poultry in China are phylogenetically distinct from A/quail/Hong Kongl/G1/97 presumed to be the donor of the internal protein genes of the H5N1 Hong Kong/97 virus , 2003, Avian pathology : journal of the W.V.P.A.

[112]  Ya Ha,et al.  X-ray structure of the hemagglutinin of a potential H3 avian progenitor of the 1968 Hong Kong pandemic influenza virus. , 2003, Virology.

[113]  A. García-Sastre,et al.  Reverse genetics studies on the filamentous morphology of influenza A virus. , 2003, The Journal of general virology.

[114]  J. Montreuil,et al.  Diversity of the human erythrocyte membrane sialic acids in relation with blood groups , 2003, FEBS letters.

[115]  R. Webster,et al.  Differences between influenza virus receptors on target cells of duck and chicken , 2002, Archives of Virology.

[116]  G. Rettinger,et al.  Nasal mucosal temperature during respiration. , 2002, Clinical otolaryngology and allied sciences.

[117]  S. Baigent,et al.  Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture. , 2001, Virus research.

[118]  P. Massin,et al.  Residue 627 of PB2 Is a Determinant of Cold Sensitivity in RNA Replication of Avian Influenza Viruses , 2001, Journal of Virology.

[119]  Yoshihiro Kawaoka,et al.  Early Alterations of the Receptor-Binding Properties of H1, H2, and H3 Avian Influenza Virus Hemagglutinins after Their Introduction into Mammals , 2000, Journal of Virology.

[120]  H. Klenk,et al.  Interdependence of Hemagglutinin Glycosylation and Neuraminidase as Regulators of Influenza Virus Growth: a Study by Reverse Genetics , 2000, Journal of Virology.

[121]  L. Mitnaul,et al.  Balanced Hemagglutinin and Neuraminidase Activities Are Critical for Efficient Replication of Influenza A Virus , 2000, Journal of Virology.

[122]  K. Subbarao,et al.  Genetic characterization of H3N2 influenza viruses isolated from pigs in North America, 1977-1999: evidence for wholly human and reassortant virus genotypes. , 2000, Virus research.

[123]  Y. Kawaoka,et al.  Influenza A Viruses Lacking Sialidase Activity Can Undergo Multiple Cycles of Replication in Cell Culture, Eggs, or Mice , 2000, Journal of Virology.

[124]  M. Peiris,et al.  Human infection with influenza H9N2 , 1999, The Lancet.

[125]  Yoshihiro Kawaoka,et al.  Amino Acid Residues Contributing to the Substrate Specificity of the Influenza A Virus Neuraminidase , 1999, Journal of Virology.

[126]  K. Shortridge Poultry and the influenza H5N1 outbreak in Hong Kong, 1997: abridged chronology and virus isolation. , 1999, Vaccine.

[127]  I. Jääskeläinen,et al.  Occurrence of sialic acids in healthy humans and different disorders , 1999, European journal of clinical investigation.

[128]  David J Stevens,et al.  Structure of the Hemagglutinin Precursor Cleavage Site, a Determinant of Influenza Pathogenicity and the Origin of the Labile Conformation , 1998, Cell.

[129]  E. Nickerson,et al.  A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[130]  Yoshihiro Kawaoka,et al.  Molecular Basis for the Generation in Pigs of Influenza A Viruses with Pandemic Potential , 1998, Journal of Virology.

[131]  J. McKimm-Breschkin,et al.  The interaction of neuraminidase and hemagglutinin mutations in influenza virus in resistance to 4-guanidino-Neu5Ac2en. , 1998, Virology.

[132]  Y. Kozutsumi,et al.  The Molecular Basis for the Absence ofN-Glycolylneuraminic Acid in Humans* , 1998, The Journal of Biological Chemistry.

[133]  N. Bovin,et al.  Postreassortment changes in influenza A virus hemagglutinin restoring HA-NA functional match. , 1998, Virology.

[134]  R. Webster,et al.  Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus , 1998, The Lancet.

[135]  N. Cox,et al.  Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. , 1998, Science.

[136]  R. Lamb,et al.  The M1 and M2 proteins of influenza A virus are important determinants in filamentous particle formation. , 1998, Virology.

[137]  S. Kelm,et al.  Sialic Acids in Molecular and Cellular Interactions , 1997, International Review of Cytology.

[138]  A. van Donkelaar,et al.  Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[139]  N V Bovin,et al.  Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6'-sialyl(N-acetyllactosamine). , 1997, Virology.

[140]  M B Eisen,et al.  Binding of the influenza A virus to cell-surface receptors: structures of five hemagglutinin-sialyloligosaccharide complexes determined by X-ray crystallography. , 1997, Virology.

[141]  Y. Kawaoka,et al.  Swine influenza virus strains recognize sialylsugar chains containing the molecular species of sialic acid predominantly present in the swine tracheal epithelium , 1997, FEBS letters.

[142]  G. Air,et al.  Hemagglutinin specificity and neuraminidase coding capacity of neuraminidase-deficient influenza viruses. , 1997, Virology.

[143]  L. Mitnaul,et al.  Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. , 1997, Virology.

[144]  R. Webster,et al.  Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. , 1994, Virology.

[145]  W G Laver,et al.  Three-dimensional structure of influenza A N9 neuraminidase and its complex with the inhibitor 2-deoxy 2,3-dehydro-N-acetyl neuraminic acid. , 1994, Journal of molecular biology.

[146]  T. Irimura,et al.  Strong affinity of Maackia amurensis hemagglutinin (MAH) for sialic acid‐containing Ser/Thr‐linked carbohydrate chains of N‐terminal octapeptides from human glycophorin A , 1994, FEBS letters.

[147]  B. Murphy,et al.  Rescue of an influenza A virus wild-type PB2 gene and a mutant derivative bearing a site-specific temperature-sensitive and attenuating mutation , 1993, Journal of virology.

[148]  J. Paulson,et al.  Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. , 1993, Virus research.

[149]  Y. Kawaoka,et al.  Biologic importance of neuraminidase stalk length in influenza A virus , 1993, Journal of virology.

[150]  M. Matrosovich,et al.  A solid-phase enzyme-linked assay for influenza virus receptor-binding activity. , 1992, Journal of virological methods.

[151]  A. van Donkelaar,et al.  Refined atomic structures of N9 subtype influenza virus neuraminidase and escape mutants. , 1992, Journal of molecular biology.

[152]  R. Webster,et al.  Evolution and ecology of influenza A viruses. , 1992, Current topics in microbiology and immunology.

[153]  G. N. Rogers,et al.  Receptor binding properties of human and animal H1 influenza virus isolates. , 1989, Virology.

[154]  G. Air,et al.  Three-dimensional structures of influenza virus neuraminidase-antibody complexes. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[155]  S. Cusack,et al.  Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid , 1988, Nature.

[156]  R. Cummings,et al.  The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked alpha-2,3 to penultimate galactose residues. , 1988, The Journal of biological chemistry.

[157]  I. Goldstein,et al.  The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. , 1987, The Journal of biological chemistry.

[158]  R. Ruigrok,et al.  Electron microscopy of influenza virus. A comparison of negatively stained and ice-embedded particles. , 1985, Journal of molecular biology.

[159]  W G Laver,et al.  An 18-amino acid deletion in an influenza neuraminidase. , 1985, Virology.

[160]  H. F. Bowman,et al.  Thermal mapping of the airways in humans. , 1985, Journal of applied physiology.

[161]  I. Wilson,et al.  Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity , 1983, Nature.

[162]  J. Paulson,et al.  Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. , 1983, Virology.

[163]  W. J. Bean,et al.  Mass mortality of harbor seals: pneumonia associated with influenza A virus. , 1982, Science.

[164]  H. Klenk,et al.  Proteolytic activation of the influenza virus hemagglutinin: The structure of the cleavage site and the enzymes involved in cleavage. , 1981, Virology.

[165]  H. Klenk,et al.  Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of Avian influenza viruses. , 1981, Virology.

[166]  J. Paulson,et al.  Different cell-surface receptor determinants of antigenically similar influenza virus hemagglutinins. , 1981, The Journal of biological chemistry.

[167]  I. Wilson,et al.  Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution , 1981, Nature.

[168]  L. Kit,et al.  A revision of the system of nomenclature for influenza viruses: a WHO memorandum. , 1980, Bulletin of the World Health Organization.

[169]  R. Compans,et al.  Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. , 1974, Virology.

[170]  M. Nermut Further investigation on the fine structure of influenza virus. , 1972, The Journal of general virology.

[171]  D. Horstmann Virology Monographs , 1969, The Yale Journal of Biology and Medicine.

[172]  P. Choppin,et al.  STUDIES OF TWO KINDS OF VIRUS PARTICLES WHICH COMPRISE INFLUENZA A2 VIRUS STRAINS , 1960, The Journal of experimental medicine.

[173]  H. Faillard,et al.  [Enzymatic effect of the influenza virus]. , 1955, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[174]  A. Gottschalk,et al.  Product of Interaction between Influenza Virus Enzyme and Ovomucin , 1949, Nature.

[175]  I. Dawson,et al.  Filamentous forms associated with newly isolated influenza virus. , 1949, Lancet.

[176]  R. Hare,et al.  The efficiency of the red cell adsorption and elution method for the preparation of influenza vaccine. , 1946, Canadian journal of public health = Revue canadienne de sante publique.

[177]  R. Wyckoff,et al.  Electron Micrography of the Virus of Influenza , 1946, Nature.

[178]  F. Burnet,et al.  CHANGES IN INFLUENZA VIRUS ASSOCIATED WITH ADAPTATION TO PASSAGE IN CHICK EMBRYOS , 1943 .

[179]  G. K. Hirst THE AGGLUTINATION OF RED CELLS BY ALLANTOIC FLUID OF CHICK EMBRYOS INFECTED WITH INFLUENZA VIRUS. , 1941, Science.

[180]  P. Lewis,et al.  SWINE INFLUENZA , 1931, The Journal of Experimental Medicine.

[181]  Jie Dong,et al.  Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus. , 2018 .

[182]  X. Xiong,et al.  Receptor binding properties of the influenza virus hemagglutinin as a determinant of host range. , 2014, Current topics in microbiology and immunology.

[183]  E. Lillehoj,et al.  Cellular and molecular biology of airway mucins. , 2013, International review of cell and molecular biology.

[184]  Zheng Xing,et al.  Adaptation and transmission of a duck-origin avian influenza virus in poultry species. , 2010, Virus research.

[185]  Ron A M Fouchier,et al.  Immunopathology and Infectious Disease Human and Avian Influenza Viruses Target Different Cells in the Lower Respiratory Tract of Humans and Other Mammals , 2010 .

[186]  Inka Brockhausen,et al.  O-GalNAc Glycans , 2009 .

[187]  Hudson H. Freeze,et al.  Genetic Disorders of Glycosylation , 2009 .

[188]  D. Normile Avian influenza. New H5N1 strain emerges in southern China. , 2006, Science.

[189]  C. Scholtissek Molecular evolution of influenza viruses , 2005, Virus Genes.

[190]  J. Paulson,et al.  The N2 neuraminidase of human influenza virus has acquired a substrate specificity complementary to the hemagglutinin receptor specificity. , 1991, Virology.

[191]  J. Paulson,et al.  Resialylated erythrocytes for assessment of the specificity of sialyloligosaccharide binding proteins. , 1987, Methods in enzymology.

[192]  J. Nemec,et al.  Isolation of a virus causing respiratory disease in horses. , 1958, Acta virologica.

[193]  G. Blix,et al.  Sialic Acids , 1955, Nature.

[194]  F. Burnet Enzymic action of influenza viruses on glandular mucin and on purified blood group substances. , 1947, The Australian journal of science.