Stability of one‐dimensional boundary layers by using Green's functions

The aim of this paper is to investigate the stability of one-dimensional boundary layers of parabolic systems as the viscosity goes to 0 in the noncharacteristic case and, more precisely, to prove that spectral stability implies linear and nonlinear stability of approximate solutions. In particular, we replace the smallness condition obtained by the energy method [10, 13] by a weaker spectral condition. © 2001 John Wiley & Sons, Inc.

[1]  K. Case Stability of Inviscid Plane Couette Flow , 1960 .

[2]  Sylvie Benzoni-Gavage,et al.  Stability of Semi-Discrete Shock Profiles by Means of an Evans Function in Infinite Dimensions , 2002 .

[3]  Emmanuel Grenier,et al.  On the nonlinear instability of Euler and Prandtl equations , 2000 .

[4]  Olivier Guès,et al.  Perturbations visqueuses de problèmes mixtes hyperboliques et couches limites , 1995 .

[5]  Kevin Zumbrun,et al.  Viscous and inviscid stability of multidimensional planar shock fronts , 1999 .

[6]  Kevin Zumbrun,et al.  Pointwise semigroup methods and stability of viscous shock waves Indiana Univ , 1998 .

[7]  P. Godillon Linear stability of shock profiles for systems of conservation laws with semi-linear relaxation , 2001 .

[8]  S. Yu,et al.  Zero-Dissipation Limit of Solutions with Shocks for Systems of Hyperbolic Conservation Laws , 1999 .

[9]  Kevin Zumbrun,et al.  Alternate Evans Functions and Viscous Shock Waves , 2001, SIAM J. Math. Anal..

[10]  Denis Serre,et al.  Unstable Godunov Discrete Profiles for Steady Shock Waves , 1998 .

[11]  D. Serre Sur la stabilité des couches limites de viscosité , 2001 .

[12]  Kevin Zumbrun,et al.  The gap lemma and geometric criteria for instability of viscous shock profiles , 1998 .

[13]  Tosio Kato Perturbation theory for linear operators , 1966 .

[14]  H. Kreiss,et al.  Stability of systems of viscous conservation laws , 1998 .

[15]  Tai-Ping Liu,et al.  Pointwise convergence to shock waves for viscous conservation laws , 1997 .

[16]  W. A. Coppel Dichotomies in Stability Theory , 1978 .

[17]  Emmanuel Grenier,et al.  Boundary Layers for Viscous Perturbations of Noncharacteristic Quasilinear Hyperbolic Problems , 1998 .