Identification of key microRNAs in the carotid arteries of ApoE−/− mice exposed to disturbed flow

[1]  J. VandeBerg,et al.  Identification of coordinately regulated microRNA-gene networks that differ in baboons discordant for LDL-cholesterol , 2019, PloS one.

[2]  M. Czyz,et al.  Role of miRNAs in Melanoma Metastasis , 2019, Cancers.

[3]  E. Aikawa,et al.  Differential miRNA Loading Underpins Dual Harmful and Protective Roles for Extracellular Vesicles in Atherogenesis. , 2019, Circulation research.

[4]  J. Torras,et al.  An Exonic Switch Regulates Differential Accession of microRNAs to the Cd34 Transcript in Atherosclerosis Progression , 2019, Genes.

[5]  Minsuk Kim,et al.  Fluid shear stress regulates the expression of Lectin-like oxidized low density lipoprotein receptor-1 via KLF2-AP-1 pathway depending on its intensity and pattern in endothelial cells. , 2018, Atherosclerosis.

[6]  Xiang-Hu He,et al.  LncRNA MALAT1 regulates sepsis‐induced cardiac inflammation and dysfunction via interaction with miR‐125b and p38 MAPK/NF&kgr;B , 2018, International immunopharmacology.

[7]  Xin-hua Zhang,et al.  Regulatory crosstalk between KLF5, miR-29a and Fbw7/CDC4 cooperatively promotes atherosclerotic development. , 2018, Biochimica et biophysica acta. Molecular basis of disease.

[8]  X. Liao,et al.  Visualizing the spatiotemporal map of Rac activation in bovine aortic endothelial cells under laminar and disturbed flows , 2017, PloS one.

[9]  P. Włodarski,et al.  MicroRNA regulation of extracellular matrix components in the process of atherosclerotic plaque destabilization , 2017, Clinical and experimental pharmacology & physiology.

[10]  Yuanbo Wu,et al.  MiR-181c restrains nitration stress of endothelial cells in diabetic db/db mice through inhibiting the expression of FoxO1. , 2017, Biochemical and biophysical research communications.

[11]  K. Rayner,et al.  MicroRNAs in the Pathobiology and Therapy of Atherosclerosis. , 2017, The Canadian journal of cardiology.

[12]  H. Jo,et al.  KLF2 and KLF4 control endothelial identity and vascular integrity. , 2017, JCI insight.

[13]  Mingcheng Huang,et al.  The suppression of bromodomain and extra‐terminal domain inhibits vascular inflammation by blocking NF‐κB and MAPK activation , 2017, British journal of pharmacology.

[14]  Fengxu Yu,et al.  Shear stress regulates endothelial cell function through SRB1-eNOS signaling pathway. , 2016, Cardiovascular therapeutics.

[15]  C. Genco,et al.  Immune dysregulation mediated by the oral microbiome: potential link to chronic inflammation and atherosclerosis , 2016, Journal of internal medicine.

[16]  Priyatansh Gurha MicroRNAs in cardiovascular disease , 2016, Current opinion in cardiology.

[17]  K. Moore,et al.  MicroRNA Regulation of Atherosclerosis. , 2016, Circulation research.

[18]  M. Bennett,et al.  Vascular Smooth Muscle Cells in Atherosclerosis. , 2016, Circulation research.

[19]  Michael J. Thomas,et al.  Microdomains, Inflammation, and Atherosclerosis. , 2016, Circulation research.

[20]  P. Carmeliet,et al.  FOXO1 couples metabolic activity and growth state in the vascular endothelium , 2015, Nature.

[21]  G. Hasenfuss,et al.  Circulating Endothelial Cells Expressing the Angiogenic Transcription Factor Krüppel‐Like Factor 4 are Decreased in Patients with Coronary Artery Disease , 2015, Microcirculation.

[22]  E. Edelman,et al.  miRNAs in atherosclerotic plaque initiation, progression, and rupture. , 2015, Trends in molecular medicine.

[23]  Fan Zhang,et al.  Low Shear Stress Induced HMGB1 Translocation and Release via PECAM-1/PARP-1 Pathway to Induce Inflammation Response , 2015, PloS one.

[24]  Justin L. Mott,et al.  Overview of MicroRNA Biology , 2015, Seminars in Liver Disease.

[25]  Guifu Wu,et al.  Shear-sensitive microRNA-34a modulates flow-dependent regulation of endothelial inflammation , 2015, Journal of Cell Science.

[26]  H. Jo,et al.  Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[27]  Sinae Kim,et al.  MiRNA-155 targets myosin light chain kinase and modulates actin cytoskeleton organization in endothelial cells. , 2014, American journal of physiology. Heart and circulatory physiology.

[28]  S. Rajagopalan,et al.  Renin-sensitive microRNAs correlate with atherosclerosis plaque progression , 2014, Journal of Human Hypertension.

[29]  M. Siebes,et al.  Perfusion territories subtended by penetrating coronary arteries increase in size and decrease in number toward the subendocardium. , 2014, American journal of physiology. Heart and circulatory physiology.

[30]  Gene Kim,et al.  MicroRNA regulation of cardiac conduction and arrhythmias. , 2013, Translational research : the journal of laboratory and clinical medicine.

[31]  B. Fisslthaler,et al.  AMP-Activated Protein Kinase Regulates Endothelial Cell Angiotensin-Converting Enzyme Expression via p53 and the Post-Transcriptional Regulation of microRNA-143/145 , 2013, Circulation research.

[32]  C. Ince,et al.  Microcirculation , 2012, Springer US.

[33]  R. DePinho,et al.  FoxOs integrate pleiotropic actions of insulin in vascular endothelium to protect mice from atherosclerosis. , 2012, Cell metabolism.

[34]  Achilleas S. Frangakis,et al.  Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs , 2012, Nature Cell Biology.

[35]  Qing Jing,et al.  Vascular smooth muscle cell proliferation is influenced by let-7d microRNA and its interaction with KRAS. , 2011, Circulation journal : official journal of the Japanese Circulation Society.

[36]  J. Pober,et al.  MEK5 is Activated by Shear Stress, Activates ERK5 and Induces KLF4 to Modulate TNF Responses in Human Dermal Microvascular Endothelial Cells , 2011, Microcirculation.

[37]  Jae Heun Lee,et al.  PTEN differentially regulates expressions of ICAM-1 and VCAM-1 through PI3K/Akt/GSK-3β/GATA-6 signaling pathways in TNF-α-activated human endothelial cells. , 2010, Atherosclerosis.

[38]  J. Visvader,et al.  Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. , 2010, Blood.

[39]  Shu Chien,et al.  Vascular endothelial responses to altered shear stress: Pathologic implications for atherosclerosis , 2009, Annals of medicine.

[40]  L. Muglia,et al.  Requirement for p38 Mitogen-Activated Protein Kinase Activity in Neointima Formation After Vascular Injury , 2008, Circulation.

[41]  H. Snieder,et al.  SHP-2 and PI3-kinase genes PTPN11 and PIK3R1 may influence serum apoB and LDL cholesterol levels in normal women. , 2007, Atherosclerosis.

[42]  S. Nilsson,et al.  Development of femoral atherosclerosis in relation to flow disturbances. , 1996, Journal of biomechanics.

[43]  P. Libby,et al.  Combined non-invasive assessment of endothelial shear stress and molecular imaging of inflammation for the prediction of inflamed plaque in hyperlipidaemic rabbit aortas , 2017, European heart journal cardiovascular Imaging.

[44]  P. Portincasa,et al.  Cholesterol and Lipoprotein Metabolism and Atherosclerosis: Recent Advances in Reverse Cholesterol Transport. , 2017, Annals of hepatology.

[45]  H. Kim,et al.  MicroRNA Regulation of Cardiac Conduction and Arrhythmias , 2013 .

[46]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..