Property characterization and numerical modelling of the thermal conductivity of CaZrO3-MgO ceramic composites

[1]  C. Baudín,et al.  Modelling of elastic modulus of CaZrO3-MgO composites using isotropic elastic and anisotropic models , 2020 .

[2]  W. Pabst,et al.  Phase mixture modeling of the grain size dependence of Young’s modulus and thermal conductivity of alumina and zirconia ceramics , 2020 .

[3]  S. Santhanam,et al.  Micromechanical modeling of thermo-mechanical properties of high volume fraction particle-reinforced refractory composites using 3D Finite Element analysis , 2020 .

[4]  C. Baudín,et al.  Modelling of elastic modulus of a biphasic ceramic microstructure using 3D representative volume elements , 2020 .

[5]  Q. Zeng,et al.  Tailoring the thermal and mechanical properties of lightweight cement-based composites by macro and micro fillers , 2019, Cement and Concrete Composites.

[6]  M. Fukushima,et al.  Thermal conductivity analysis using three‐dimensional microstructures of gelation freezing derived cellular mullite , 2018 .

[7]  B. Nait‐Ali,et al.  Grain boundary thermal resistance and finite grain size effects for heat conduction through porous polycrystalline alumina , 2018, International Journal of Heat and Mass Transfer.

[8]  W. Pabst,et al.  Modeling of Young’s modulus and thermal conductivity evolution of partially sintered alumina ceramics with pore shape changes from concave to convex , 2017, Journal of the European Ceramic Society.

[9]  M. Tomsic,et al.  Computational homogenization of the elastic and thermal properties of superconducting composite MgB2 wire , 2017 .

[10]  C. Baudín,et al.  Young’s modulus and hardness of multiphase CaZrO3-MgO ceramics by micro and nanoindentation , 2017 .

[11]  Jian Luo,et al.  The role of ceramic and glass science research in meeting societal challenges: Report from an NSF-sponsored workshop , 2017 .

[12]  C. Baudín,et al.  CaZrO3–MgO structural ceramics obtained by reaction sintering of dolomite-zirconia mixtures , 2016 .

[13]  Ke Yang,et al.  Modeling of thermal properties and failure of thermal barrier coatings with the use of finite element methods: A review , 2016 .

[14]  Paul R. Shearing,et al.  On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems , 2016 .

[15]  Yunping Xi,et al.  Mesoscale model for thermal conductivity of concrete , 2015 .

[16]  Q. Ren,et al.  Mesoscopic numerical simulation of effective thermal conductivity of tensile cracked concrete , 2015 .

[17]  A. L. Ortiz,et al.  2ZrO2·Y2O3 Thermal Barrier Coatings Resistant to Degradation by Molten CMAS: Part I, Optical Basicity Considerations and Processing , 2014 .

[18]  Anne M. Hofmeister,et al.  Thermal diffusivity and thermal conductivity of single-crystal MgO and Al2O3 and related compounds as a function of temperature , 2014, Physics and Chemistry of Minerals.

[19]  C. Dames,et al.  Comparison of Two‐Phase Thermal Conductivity Models with Experiments on Dilute Ceramic Composites , 2013 .

[20]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[21]  David R. Clarke,et al.  Thermal barrier coating materials , 2005 .

[22]  James K. Carson,et al.  Thermal conductivity bounds for isotropic, porous materials , 2005 .

[23]  X. D. Liu,et al.  Finite element simulation of the thermal properties of particulate and continuous network-reinforced metal-matrix composites , 2005 .

[24]  I. Levin,et al.  Phase equilibria, crystal structures, and dielectric anomaly in the BaZrO3–CaZrO3 system , 2003 .

[25]  G. Bai,et al.  Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia , 2002 .

[26]  William E Lee,et al.  Ceramic Microstructures: Property control by processing , 1994 .

[27]  C. Mathews,et al.  Thermodynamic properties of ternary oxides of fission products from calorimetric measurements , 1989 .

[28]  Brian R. Lawn,et al.  A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I , 1981 .

[29]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[30]  G. Grabowski Modelling of thermal expansion of single- and two-phase ceramic polycrystals utilising synthetic 3D microstructures , 2019, Computational Materials Science.

[31]  W. Pan,et al.  Defect engineering in development of low thermal conductivity materials: A review , 2017 .

[32]  Tobias Malte Müller,et al.  3D modelling of ceramic composites and simulation of their electrical, thermal and elastic properties , 2014 .

[33]  Cristina Valencia Recubrimientos cerámicos con aplicación en barreras térmicas y ambientales , 2008 .

[34]  Jiangang Sun Evaluation of Ceramic Matrix Composites by Thermal Diffusivity Imaging , 2007 .

[35]  M. D. Mathews,et al.  High-temperature X-ray diffractometric studies of CaZrO3, SrZrO3 and BaZrO3 , 1991 .

[36]  K. Fujino,et al.  X-Ray Determination of Electron-Density Distributions in Oxides, MgO, MnO, CoO, and NiO, and Atomic Scattering Factors of their Constituent Atoms , 1979 .

[37]  W. D. Kingery,et al.  Introduction to Ceramics , 1976 .