Intracycle angular velocity control of cross-flow turbines

Cross-flow turbines, also known as vertical-axis turbines, have numerous features that make them attractive for wind and marine renewable energy. To maximize power output, the turbine blade kinematics may be controlled during the course of the blade revolution, thus optimizing the unsteady fluid dynamic forces. Dynamically pitching the blades, similar to blade control in a helicopter, is an established method. However, this technique adds undesirable mechanical complexity to the turbine, increasing cost and reducing durability. Here we introduce a novel alternative requiring no additional moving parts: we optimize the turbine rotation rate as a function of blade position resulting in motion (including changes in the effective angle of attack) that is precisely timed to exploit unsteady fluid effects. We demonstrate experimentally that this approach results in a 79% increase in power output over industry standard control methods. Analysis of the fluid forcing and blade kinematics show that maximal power is achieved through alignment of fluid force and rotation rate extrema. In addition, the optimized controller excites a well-timed dynamic stall vortex, as is found in many examples of biological propulsion. This control strategy allows a structurally robust turbine operating at relatively low angular velocity to achieve high efficiency and could enable a new generation of environmentally-benign turbines for wind and water current power generation.

[1]  W. Mccroskey,et al.  Analysis of the development of dynamic stall based on oscillating airfoil experiments , 1977 .

[2]  M. Thring World Energy Outlook , 1977 .

[3]  M H Dickinson,et al.  Leading-Edge Vortices Elevate Lift of Autorotating Plant Seeds , 2009, Science.

[4]  M. Dickinson,et al.  Spanwise flow and the attachment of the leading-edge vortex on insect wings , 2001, Nature.

[5]  S. H. Salter,et al.  Vertical-axis tidal-current generators and the Pentland Firth , 2007 .

[6]  Iulian Munteanu,et al.  Wind turbulence used as searching signal for MPPT in variable-speed wind energy conversion systems , 2009 .

[7]  Max F. Platzer,et al.  Numerical Analysis of an Oscillating-Wing Wind and Hydropower Generator , 2011 .

[8]  F. Saeed,et al.  H-Darrieus Wind Turbine with Blade Pitch Control , 2009 .

[9]  Robert J. Cavagnaro,et al.  Power Collection from Multiple Hydrokinetic Generators Utilizing Advanced Control , 2017 .

[10]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[11]  B. R. Noack,et al.  Closed-Loop Turbulence Control: Progress and Challenges , 2015 .

[12]  Abel-John Buchner,et al.  Dynamic stall in vertical axis wind turbines: comparing experiments and computations , 2015 .

[13]  Brian Kirke,et al.  Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines , 2011 .

[14]  B. Tobalske,et al.  Aerodynamics of the hovering hummingbird , 2005, Nature.

[15]  Mats Leijon,et al.  Evaluation of different turbine concepts for wind power , 2008 .

[16]  John E. Quaicoe,et al.  Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review , 2009 .

[17]  J. Gordon Leishman,et al.  Principles of Helicopter Aerodynamics , 2000 .

[18]  A. Hedenström,et al.  Leading-Edge Vortex Improves Lift in Slow-Flying Bats , 2008, Science.

[19]  Franz S. Hover,et al.  Effect of angle of attack profiles in flapping foil propulsion , 2004 .

[20]  Alessandro Schönborn,et al.  Development of a hydraulic control mechanism for cyclic pitch marine current turbines , 2007 .

[21]  Bradley J. Buckham,et al.  Experimental and numerical comparisons of self-reacting point absorber wave energy converters in regular waves , 2015 .

[22]  Francesco Balduzzi,et al.  Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building , 2012 .

[23]  John O Dabiri,et al.  Fish schooling as a basis for vertical axis wind turbine farm design , 2010, Bioinspiration & biomimetics.

[24]  B. F. Blackwell,et al.  Sandia vertical-axis wind turbine program. Technical quarterly report, January--March 1976 , 1976 .

[25]  D. Greenblatt,et al.  Dynamic Stall Control on a Vertical Axis Wind Turbine Using Plasma Actuators , 2014 .

[26]  T. Colonius,et al.  Coriolis Effect on Dynamic Stall in a Vertical Axis Wind Turbine at Moderate Reynolds Number , 2014 .

[27]  S. Yarusevych,et al.  Aerodynamic Characterization of a NACA 0018 Airfoil at Low Reynolds Numbers , 2010 .

[28]  T. Kinsey,et al.  Parametric Study of an Oscillating Airfoil in a Power-Extraction Regime , 2008 .

[29]  Nasir Hayat,et al.  Vertical axis wind turbine – A review of various configurations and design techniques , 2012 .

[30]  L.Y. Pao,et al.  Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture , 2006, IEEE Control Systems.

[31]  John O. Dabiri Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays , 2010 .

[32]  M. Dickinson,et al.  Wing rotation and the aerodynamic basis of insect flight. , 1999, Science.

[33]  Qing Xiao,et al.  How motion trajectory affects energy extraction performance of a biomimic energy generator with an oscillating foil , 2012 .

[34]  Steven L. Brunton,et al.  State-space model identification and feedback control of unsteady aerodynamic forces , 2014, 1401.1473.

[35]  J. S. Ivey,et al.  Nelder-Mead simplex modifications for simulation optimization , 1996 .

[36]  P. G. Migliore,et al.  Flow Curvature Effects on Darrieus Turbine Blade Aerodynamics , 1980 .

[37]  J. Strickland,et al.  Dynamic-stall regulation of the Darrieus turbine , 1983 .

[38]  T. Colonius,et al.  Coriolis Effect on Dynamic Stall in a Vertical Axis Wind Turbine , 2013 .

[39]  Kevin K. Chen,et al.  The leading-edge vortex and quasisteady vortex shedding on an accelerating plate , 2009 .

[40]  C. Garrett,et al.  The efficiency of a turbine in a tidal channel , 2007, Journal of Fluid Mechanics.

[41]  Noor A. Ahmed,et al.  Enhancing vertical axis wind turbine by dynamic stall control using synthetic jets , 2013 .

[42]  P. Fraunié,et al.  Water channel experiments of dynamic stall on Darrieus wind turbine blades , 1986 .

[43]  W. J. Mccroskey,et al.  The Phenomenon of Dynamic Stall. , 1981 .

[44]  Nobuyuki Fujisawa,et al.  Observations of dynamic stall on Darrieus wind turbine blades , 2001 .

[45]  J. Dabiri,et al.  Energy exchange in an array of vertical-axis wind turbines , 2012 .

[46]  H. Bijl,et al.  Simulating Dynamic Stall in a 2D VAWT: Modeling strategy, verification and validation with Particle Image Velocimetry data , 2007 .

[47]  Herbert J. Sutherland,et al.  A retrospective of VAWT technology. , 2012 .

[48]  Johannes Falnes,et al.  Optimum Control of Oscillation of Wave-Energy Converters , 2002 .

[49]  G D E Povel,et al.  Leading-Edge Vortex Lifts Swifts , 2004, Science.

[50]  Michele Milano,et al.  Uncovering the physics of flapping flat plates with artificial evolution , 2005, Journal of Fluid Mechanics.