Sound wave propagation in single-walled carbon nanotubes with initial axial stress

This paper studies the vibrational characteristics of single-walled carbon nanotubes (SWNTs) with initial axial loading based on the theory of nonlocal elasticity. The consistent equations of motion for the nonlocal Euler-Bernoulli and Timoshenko beam models are provided taking into account the initial axial stress. The small scale effect on CNT wave propagation dispersion relation is explicitly revealed for different CNT wave numbers and diameters by theoretical analyses and numerical simulations. In addition, the applicability of the two beam models is explored by numerical simulations. The research work reveals the significance of the effects of small scale, transverse shear deformation and rotary inertia on wave propagation in short SWCNTs with initial axial loading.

[1]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[2]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[3]  Luc T. Wille,et al.  Elastic properties of single-walled carbon nanotubes in compression , 1997 .

[4]  K. Lau Interfacial bonding characteristics of nanotube/polymer composites , 2003 .

[5]  M. Dresselhaus,et al.  Superplastic carbon nanotubes , 2006, Nature.

[6]  Kaihui Liu,et al.  Vibration of multi-walled carbon nanotubes with initial axial loading , 2007 .

[7]  Huajian Gao,et al.  Deformation Mechanisms of Very Long Single-Wall Carbon Nanotubes Subject to Compressive Loading , 2004 .

[8]  Chunyu Li,et al.  Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators , 2004 .

[9]  David Hui,et al.  The revolutionary creation of new advanced materials - Carbon nanotube composites , 2002 .

[10]  L. Sudak,et al.  Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics , 2003 .

[11]  Quan Wang,et al.  Scale effect on wave propagation of double-walled carbon nanotubes , 2006 .

[12]  S. Timoshenko,et al.  LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .

[13]  Boris I. Yakobson,et al.  High strain rate fracture and C-chain unraveling in carbon nanotubes , 1997 .

[14]  Xu Han,et al.  TRANSVERSE VIBRATIONS OF DOUBLE-WALLED CARBON NANOTUBES UNDER COMPRESSIVE AXIAL LOAD , 2005 .

[15]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[16]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[17]  Shaker A. Meguid,et al.  Nanomechanics of single and multiwalled carbon nanotubes , 2004 .

[18]  Gui-Rong Liu,et al.  Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression , 2004 .

[19]  Toshiaki Natsuki,et al.  Stress simulation of carbon nanotubes in tension and compression , 2004 .

[20]  Mitani,et al.  Stiffness of single-walled carbon nanotubes under large strain , 2000, Physical review letters.

[21]  Yu Wang,et al.  Simulation of the elastic response and the buckling modes of single-walled carbon nanotubes , 2005 .

[22]  C. Ru,et al.  Elastic buckling of multiwall carbon nanotubes under high pressure. , 2003, Journal of nanoscience and nanotechnology.

[23]  Gui-Rong Liu,et al.  Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity , 2005 .

[24]  John Peddieson,et al.  Application of nonlocal continuum models to nanotechnology , 2003 .

[25]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[26]  Xiaodong Wang,et al.  Effects of initial stress on non-coaxial resonance of multi-wall carbon nanotubes , 2006 .

[27]  M. Grujicic,et al.  Finite element analysis-based design of a fluid-flow control nano-valve , 2005 .

[28]  Vijay K. Varadan,et al.  Stability analysis of carbon nanotubes via continuum models , 2005 .

[29]  D. Srivastava,et al.  Tensile strength of carbon nanotubes under realistic temperature and strain rate , 2002, cond-mat/0202513.

[30]  K. M. Liew,et al.  Tensile and compressive properties of carbon nanotube bundles , 2006 .

[31]  Chien Ming Wang,et al.  Effect of chirality on buckling behavior of single-walled carbon nanotubes , 2006 .

[32]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[33]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[34]  Stephen P. Timoshenko,et al.  Vibration problems in engineering , 1928 .

[35]  James F. Doyle,et al.  Wave Propagation in Structures , 1989 .

[36]  Haiyan Hu,et al.  FLEXURAL WAVE PROPAGATION IN SINGLE-WALLED CARBON NANOTUBES , 2005 .

[37]  Quan Wang,et al.  Wave propagation in carbon nanotubes via nonlocal continuum mechanics , 2005 .

[38]  P. Lu Dynamic analysis of axially prestressed micro/nanobeam structures based on nonlocal beam theory , 2007 .

[39]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[40]  P. Ajayan,et al.  Applications of Carbon Nanotubes , 2001 .

[41]  X. Wang,et al.  Effects of initial stress on transverse wave propagation in carbon nanotubes based on Timoshenko laminated beam models , 2006 .

[42]  H. P. Lee,et al.  Dynamic properties of flexural beams using a nonlocal elasticity model , 2006 .

[43]  Rethinking a Vaccine's Risk , 2001, Science.

[44]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[45]  H. P. Lee,et al.  Application of nonlocal beam models for carbon nanotubes , 2007 .

[46]  Xingming Guo,et al.  Reversible mechanical bistability of single-walled carbon nanotubes under axial strain , 2006 .

[47]  Satish Nagarajaiah,et al.  Nanotube film based on single-wall carbon nanotubes for strain sensing , 2004 .