Transient electron transport in wurtzite GaN, InN, and AlN

Transient electron transport and velocity overshoot in wurtzite GaN, InN, and AlN are examined and compared with that which occurs in GaAs. For all materials, we find that electron velocity overshoot only occurs when the electric field is increased to a value above a certain critical field, unique to each material. This critical field is strongly dependent on the material, about 4 kV/cm for the case of GaAs but much higher for the III–nitride semiconductors: 140 kV/cm for GaN, 65 kV/cm for InN, and 450 kV/cm for AlN. We find that InN exhibits the highest peak overshoot velocity and that this velocity overshoot lasts over the longest distances when compared with GaN and AlN. Finally, using a one-dimensional energy–momentum balance approach, a simple model is used to estimate the cutoff frequency performance of nitride based heterojunction field effect transistors (HFETs) and a comparison is made to recently fabricated AlGaN/GaN HFETs.

[1]  K. Brennan,et al.  Electronic transport studies of bulk zincblende and wurtzite phases of GaN based on an ensemble Monte Carlo calculation including a full zone band structure , 1995 .

[2]  D. K. Ferry,et al.  Hot electron microwave conductivity of wide bandgap semiconductors , 1976 .

[3]  Michael S. Shur,et al.  Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 °C , 1995 .

[4]  P. Vogl,et al.  Mobility of two-dimensional electrons in AlGaN/GaN modulation-doped field-effect transistors , 1998 .

[5]  M. Shur,et al.  Ballistic transport in semiconductor at low temperatures for low-power high-speed logic , 1979, IEEE Transactions on Electron Devices.

[6]  N. Goldsman,et al.  Transport simulation of bulk AlxGa1−xN and the two-dimensional electron gas at the AlxGa1−xN/GaN interface , 1998 .

[7]  Michael S. Shur,et al.  Influence of nonuniform field distribution on frequency limits of GaAs field-effect transistors , 1976 .

[8]  M. Shur,et al.  Electron transport in wurtzite indium nitride , 1998 .

[9]  Michael S. Shur,et al.  Monte Carlo calculation of velocity-field characteristics of wurtzite GaN , 1997 .

[10]  Michael S. Shur,et al.  Comparison of high field electron transport in GaN and GaAs , 1997 .

[11]  K. Brennan,et al.  Monte Carlo calculation of electron transport properties of bulk AlN , 1998 .

[12]  M. Shur,et al.  The Velocity-Field Characteristic Of Indium Nitride , 1997 .

[13]  M.A. Khan,et al.  Microwave operation of GaN/AlGaN-doped channel heterostructure field effect transistors , 1996, IEEE Electron Device Letters.

[14]  A Semi-Analytical Interpretation of Transient Electron Transport in Gallium Nitride, Indium Nitride, and Aluminum Nitride , 1998 .

[15]  Tanakorn Osotchan,et al.  Electron mobilities in gallium, indium, and aluminum nitrides , 1994 .

[16]  P. Lugli,et al.  Degeneracy in the ensemble Monte Carlo method for high-field transport in semiconductors , 1985, IEEE Transactions on Electron Devices.

[17]  Thomas F. Kuech,et al.  Velocity-field characteristics of electrons in doped GaAs , 1989 .

[18]  D. Ferry High-field transport in wide-band-gap semiconductors , 1975 .

[19]  A. Palevski,et al.  High‐gain lateral hot‐electron device , 1989 .

[20]  E. Constant,et al.  Modeling of a submicrometer gate field‐effect transistor including effects of nonstationary electron dynamics , 1980 .

[21]  Inspec,et al.  Properties of group III nitrides , 1994 .

[22]  M. Shur,et al.  Current‐voltage characteristics of strained piezoelectric structures , 1995 .

[23]  J. S. Blakemore Semiconducting and other major properties of gallium arsenide , 1982 .

[24]  Michael A. Littlejohn,et al.  Velocity‐field characteristics of GaAs with Γc6‐Lc6‐Xc6 conduction‐band ordering , 1977 .

[25]  Koch,et al.  Lateral tunneling, ballistic transport, and spectroscopy in a two-dimensional electron gas. , 1989, Physical review letters.

[26]  Y.-F. Wu,et al.  High Al-content AlGaN/GaN MODFETs for ultrahigh performance , 1998, IEEE Electron Device Letters.

[27]  I. Adesida,et al.  DC and microwave performance of high-current AlGaN/GaN heterostructure field effect transistors grown on p-type SiC substrates , 1998, IEEE Electron Device Letters.

[28]  M. Shur,et al.  Microwave performance of 0.25μm doped channel GaN/AlGaN heterostructure field effect transistor at elevated temperatures , 1997 .

[29]  M. Asif Khan,et al.  CW operation of short-channel GaN/AlGaN doped channel heterostructure field effect transistors at 10 GHz and 15 GHz , 1996, IEEE Electron Device Letters.

[30]  W. Fawcett,et al.  Monte Carlo determination of electron transport properties in gallium arsenide , 1970 .

[31]  Thomas,et al.  Direct observation of ballistic transport in GaAs. , 1985, Physical review letters.

[32]  M. Shur,et al.  GaN/AIGaN Heterostructure Devices: Photodetectors and Field-Effect Transistors , 1997 .

[33]  J. J. Tietjen,et al.  THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN , 1969 .

[34]  Hadis Morkoç,et al.  Progress and prospects of group-III nitride semiconductors , 1996 .

[35]  M. Schilfgaarde,et al.  Bandstructure effect on high-field transport in GaN and GaAlN , 1997 .

[36]  A. Ballato,et al.  Piezoelectric materials for acoustic wave applications , 1994, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[37]  S. Nakamura Blue-Green Light-Emitting Diodes and Violet Laser Diodes , 1997 .

[38]  J. G. Ruch,et al.  Electron dynamics in short channel field-effect transistors , 1972 .

[39]  M.A. Khan,et al.  0.12-μm gate III-V nitride HFET's with high contact resistances , 1997, IEEE Electron Device Letters.

[40]  H. Morkoç,et al.  GaN, AlN, and InN: A review , 1992 .

[41]  K. Brennan,et al.  Electron transport characteristics of GaN for high temperature device modeling , 1998 .

[42]  Cathy P. Foley,et al.  Optical band gap of indium nitride , 1986 .

[43]  J. Pankove,et al.  Epitaxially grown AlN and its optical band gap , 1973 .

[44]  G. Weiss,et al.  Advances in Electronics and Electron Physics , 1958 .

[45]  Michael A. Littlejohn,et al.  Theoretical study of electron transport in gallium nitride , 1995 .

[46]  Y.-F. Wu,et al.  Short channel AlGaN/GaN MODFET's with 50-GHz f/sub T/ and 1.7-W/mm output-power at 10 GHz , 1997, IEEE Electron Device Letters.

[47]  N. Zakhleniuk,et al.  Multisubband hot-electron transport in GaN-based quantum wells , 1998 .

[48]  M. Shur,et al.  Electron mobility in two-dimensional electron gas in AIGaN/GaN heterostructures and in bulk GaN , 1996 .

[49]  Michael A. Littlejohn,et al.  Monte Carlo calculation of the velocity‐field relationship for gallium nitride , 1975 .

[50]  Michael S. Shur,et al.  Piezoresistive effect in wurtzite n‐type GaN , 1996 .

[51]  M. Shur,et al.  Monte Carlo simulation of electron transport in gallium nitride , 1993 .

[52]  Hong,et al.  Interference and dephasing by electron-electron interaction on length scales shorter than the elastic mean free path. , 1991, Physical review letters.

[53]  M. Shur,et al.  Monte Carlo simulation of electron transport in wurtzite aluminum nitride , 1998 .