Evaluation of GPU-Based Empirical Mode Decomposition for Off-Line Analysis

SUMMARY In off-line analysis, the demand for high precision signal processing has introduced a new method called Empirical Mode Decomposition (EMD), which is used for analyzing a complex set of data. Unfortunately, EMD is highly compute-intensive. In this paper, we show parallel implementation of Empirical Mode Decomposition on a GPU. We propose the use of “partial+total” switching method to increase performance while keeping the precision. We also focused on reducing the computation complexity in the above method from O(N) on a single CPU to O(N/P log (N)) on a GPU. Evaluation results show our single GPU implementation using Tesla C2050 (Fermi architecture) achieves a 29.9x speedup partially, and a 11.8x speedup totally when compared to a single Intel dual core CPU.

[1]  D. P. Mandic,et al.  Multivariate empirical mode decomposition , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  Danilo P. Mandic,et al.  Filter Bank Property of Multivariate Empirical Mode Decomposition , 2011, IEEE Transactions on Signal Processing.

[3]  Danilo P. Mandic,et al.  Qualitative analysis of rotational modes within three dimensional empirical mode decomposition , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[4]  Toshihisa Tanaka,et al.  A Flexible Method for Envelope Estimation in Empirical Mode Decomposition , 2006, KES.

[5]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  Wu-chun Feng,et al.  To GPU synchronize or not GPU synchronize? , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[7]  Danilo P. Mandic,et al.  Quadrivariate Empirical Mode Decomposition , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[8]  Muhammad Altaf,et al.  Rotation Invariant Complex Empirical Mode Decomposition , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[9]  Ajit S. Bopardikar,et al.  Wavelet transforms - introduction to theory and applications , 1998 .

[10]  Yao Zhang,et al.  Fast tridiagonal solvers on the GPU , 2010, PPoPP '10.

[11]  Danilo P. Mandic,et al.  Empirical Mode Decomposition for Trivariate Signals , 2010, IEEE Transactions on Signal Processing.

[12]  Germund Dahlquist,et al.  Numerical Methods in Scientific Computing: Volume 1 , 2008 .

[13]  Norden E. Huang,et al.  Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..

[14]  Toshihisa Tanaka,et al.  Complex Empirical Mode Decomposition , 2007, IEEE Signal Processing Letters.

[15]  Andrzej Cichocki,et al.  Emd Approach to Multichannel EEG Data - the amplitude and Phase Components Clustering Analysis , 2010, J. Circuits Syst. Comput..

[16]  Hong Bao,et al.  GPGPU-Aided Ensemble Empirical-Mode Decomposition for EEG Analysis During Anesthesia , 2010, IEEE Transactions on Information Technology in Biomedicine.

[17]  Danilo P. Mandic,et al.  Multiscale Image Fusion Using Complex Extensions of EMD , 2009, IEEE Transactions on Signal Processing.

[18]  Toshio Endo,et al.  Bandwidth intensive 3-D FFT kernel for GPUs using CUDA , 2008, HiPC 2008.

[19]  Wu-chun Feng,et al.  Inter-block GPU communication via fast barrier synchronization , 2010, 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS).