Reevaluation of the Value of Autoparasitoids in Biological Control

Autoparasitoids with the capacity of consuming primary parasitoids that share the same hosts to produce males are analogous to intraguild predators. The use of autoparasitoids in biological control programs is a controversial matter because there is little evidence to support the view that autoparasitoids do not disrupt and at times may promote suppression of insect pests in combination with primary parasitoids. We found that Encarsia sophia, a facultative autoparasitoid, preferred to use heterospecific hosts as secondary hosts for producing males. The autoparasitoids mated with males originated from heterospecifics may parasitize more hosts than those mated with males from conspecifics. Provided with an adequate number of males, the autoparasitoids killed more hosts than En. formosa, a commonly used parasitoid for biological control of whiteflies. This study supports the view that autoparasitoids in combination with primary parasitoids do not disrupt pest management and may enhance such programs. The demonstrated preference of an autoparasitoid for heterospecifics and improved performance of males from heterospecifics observed in this study suggests these criteria should be considered in strategies that endeavor to mass-produce and utilize autoparasitoids in the future.

[1]  G.,et al.  The Role of an Autoparasitic Aphelinid , Coccophagoides utilis Doutt , in the Control 0 ' £ Parlatoria oleae ( Colvee ) ' , 2013 .

[2]  Tong‐Xian Liu,et al.  Mating and host density affect host feeding and parasitism in two species of whitefly parasitoids , 2011 .

[3]  P. D. De Barro,et al.  An Extensive Field Survey Combined with a Phylogenetic Analysis Reveals Rapid and Widespread Invasion of Two Alien Whiteflies in China , 2011, PloS one.

[4]  Tong‐Xian Liu,et al.  Effects of Food Deprivation on Host Feeding and Parasitism of Whitefly Parasitoids , 2010, Environmental entomology.

[5]  Tong‐Xian Liu,et al.  Food-deprived host-feeding parasitoids kill more pest insects , 2009 .

[6]  J. Eliaš,et al.  No Need to Discriminate? Reproductive Diploid Males in a Parasitoid with Complementary Sex Determination , 2009, PloS one.

[7]  M. Inbar,et al.  Almost There: Transmission Routes of Bacterial Symbionts between Trophic Levels , 2009, PloS one.

[8]  J. C. Lenteren,et al.  Hyperparasitism behaviour of the autoparasitoid Encarsia tricolor on two secondary host species , 2009, BioControl.

[9]  Tong‐Xian Liu,et al.  Host‐feeding of three parasitoid species on Bemisia tabaci biotype B and implications for whitefly biological control , 2008 .

[10]  G. Walter,et al.  Confirmation of the existence of alloparasitoids in nature – host relationships of an Australian Coccophagus species that parasitizes mealy bugs , 2006 .

[11]  D. Gerling Parasitoids attackingBemisia tabaci [Hom.: Aleyrodidae] in Eastern Africa , 1985, Entomophaga.

[12]  B. M. Wilk,et al.  Host stage preference for depositon of male eggs byCoccophagus cowperi [Hym.: Aphelinaidae] , 1981, Entomophaga.

[13]  J. Williams Some features of sex-linked hyperparasitism inAphelinidae [Hymenoptera] , 1977, Entomophaga.

[14]  J. Bale,et al.  Assessing risks of releasing exotic biological control agents of arthropod pests. , 2006, Annual review of entomology.

[15]  B. Antony,et al.  Development of Encarsia bimaculata (Heraty and Polaszek) (Hymenoptera: Aphelinidae) in Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) nymphs ☆ , 2004 .

[16]  B. Antony,et al.  Encarsia transvena (Hymenoptera: Aphelinidae) Development on Different Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) Instars , 2003 .

[17]  J. Trumble,et al.  Competitive displacement among insects and arachnids. , 2003, Annual review of entomology.

[18]  M. S. Hunter,et al.  DOES AN AUTOPARASITOID DISRUPT HOST SUPPRESSION PROVIDED BY A PRIMARY PARASITOID , 2002 .

[19]  K. Heinz,et al.  INTERSPECIFIC COMPETITION AMONG INSECT PARASITOIDS: FIELD EXPERIMENTS WITH WHITEFLIES AS HOSTS IN COTTON , 2002 .

[20]  Silwood Park Invasion and Displacement of Experimental Populations of a Conventional Parasitoid by a Heteronomous Hyperparasitoid , 2002 .

[21]  J. C. Lenteren,et al.  Heteronomous hyperparasitoids for biological control of whiteflies: balancing benefits and risks , 2002 .

[22]  C. Briggs,et al.  Autoparasitism, interference, and parasitoid-pest population dynamics. , 2001, Theoretical Population Biology.

[23]  J. Bernal,et al.  Seasonal and Scale Size Relationships between Citricola Scale (Homoptera: Coccidae) and Its Parasitoid Complex (Hymenoptera: Chalcidoidea) on San Joaquin Valley Citrus , 2001 .

[24]  G. Walter,et al.  Mating behaviour and alternative oviposition sites for male eggs in the heteronomous hyperparasitoid Coccophagus gurneyi Compere (Hymenoptera: Aphelinidae) , 2001 .

[25]  J. Woolley,et al.  Evolution and behavioral ecology of heteronomous aphelinid parasitoids. , 2001, Annual review of entomology.

[26]  S. West,et al.  Using sex ratios to estimate what limits reproduction in parasitoids , 2000 .

[27]  M. S. Hunter,et al.  Hyperparasitism by an exotic autoparasitoid: secondary host selection and the window of vulnerability of conspecific and native heterospecific hosts , 1998 .

[28]  A. Gutierrez,et al.  Prospective modelling in biological control: an analysis of the dynamics of heteronomous hyperparasitism in a cotton-whitefly-parasitoid system , 1996 .

[29]  M. S. Hunter,et al.  Secondary host choice by the autoparasitoid Encarsia pergandiella , 1996 .

[30]  J. M. Nelson,et al.  Interspecific Interactions among Natural Enemies ofBemisiain an Inundative Biological Control Program , 1996 .

[31]  T. Williams The biology of Encarsia tricolor : an autoparasitoid of whitefly , 1995 .

[32]  R D Holt,et al.  Intraguild predation: The dynamics of complex trophic interactions. , 1992, Trends in ecology & evolution.

[33]  T. Williams Host selection and sex ratio in a heteronomous hyperparasitoid , 1991 .

[34]  R. Albajes,et al.  Egg allocation of the autoparasitoid Encarsia tricolor at different relative densities of the primary host (Trialeurodes vaporariorum) and two secondary hosts (Encarsia formosa and E. tricolor) , 1991 .

[35]  R. Luck,et al.  Competition, resource partitioning and coexistence of an endoparasitoid Encarsia perniciosi and an ectoparasitoid Aphytis melinus of the California red scale , 1990 .

[36]  C. Berisford,et al.  THE LIFE HISTORY OF TOUMEYELLA PINI (KING) (HOMOPTERA: COCCIDAE) IN LOBLOLLY PINE SEED ORCHARDS IN GEORGIA , 1989, The Canadian Entomologist.

[37]  R. Nguyen,et al.  Facultative Hyperparasitism and Sex Determination of Encarsia smithi (Silvestri) (Hymenoptera: Aphelinidae) , 1987 .

[38]  J. Avilla,et al.  Effects of host stage on the development of the facultative autoparasitoid Encarsia tricolor (Hymenoptera: Aphelinidae) , 1987 .

[39]  J. Cornell,et al.  Interactions of Parasites and a Hyperparasite in Biological Control of Citrus Blackfly, Aleurocanthus woglumi (Homoptera: Aleyrodidae), in Florida , 1987 .

[40]  M. L. Williams,et al.  Release of the Parasitic Wasp, Encarsia lahorensis (Hymenoptera: Aphelinidae), for Control of Citrus Whitefly (Homoptera: Aleyrodidae) on Gardenia in Alabama , 1986 .

[41]  R. Nguyen,et al.  Population Density of the Citrus Blackfly, Aleurocanthus woglumi Ashby (Homoptera: Aleyrodidae), and Its Parasites in Urban Florida in 1979 –1981 , 1983 .

[42]  G. Walter ‘Divergent male ontogenies’ in Aphelinidae (Hymenoptera: Chalcidoidea): a simplified classification and a suggested evolutionary sequence , 1983 .

[43]  J. Reinert,et al.  Soil Injection of Insecticides for Control of Citrus Blackfly in Dooryard Citrus , 1979 .

[44]  L. Ehler Utility of Facultative Secondary Parasites in Biological Control , 1979 .

[45]  J. Reinert,et al.  Biological Control of Citrus Blackfly in Southern Florida , 1979 .

[46]  J. Williams,et al.  The biology of Physcus seminotus Silv. and P. subflavus Annecke & Insley (Aphelinidae), parasites of the sugar-cane scale insect Aulacaspis tegalensis (Zhnt.) (Diaspididae) , 1972 .

[47]  C. Huffaker,et al.  Studies of two parasites of olive scale, Parlatoria oleae (Colvée): III. The role of an autoparasitic aphelinid, Coccophagoides utilis Doutt, in the control of Parlatoria oleae (Colvée) , 1966 .