Raman scattering of polar modes of ZnO crystallites

One of the key issues of phonon dynamics of nano- and micrometer-scale crystals is the identification of the observed Raman modes. Due to the tilted orientation of small crystallites, the usual Raman selection rules pertaining to the symmetry axes no longer hold, and mixed-symmetry modes need to be considered in order to explain the polar phonon properties of the crystallites. The Raman modes of ZnO crystallites of the wurtzite structure were investigated via micro-Raman scattering. The nonpolar E2 mode was the predominant mode in the spectra for out-of-resonant conditions. In resonance the crystallites exhibited a predominant mode at ∼580cm−1, intermediate to the frequencies of the A1(LO) and the E1(LO) modes of a reference ZnO single crystal at 568 and 586cm−1, respectively. Our analysis indicates that the observed frequency of the crystallite ensemble can be explained in terms of Loudon’s model of a quasimode behavior that is due to a preferential orientation of a crystallite ensemble. Additionally, mo...

[1]  M. Cardona,et al.  Light Scattering in Solid IX , 2006 .

[2]  Mun-Seog Kim,et al.  Growth of Ga-doped ZnO nanowires by two-step vapor phase method , 2005 .

[3]  A. Balandin,et al.  Origin of the optical phonon frequency shifts in ZnO quantum dots , 2005 .

[4]  A. Purdy,et al.  Photoluminescence dynamics in ensembles of wide-band-gap nanocrystallites and powders , 2004 .

[5]  Zhongfan Liu,et al.  Low-temperature growth and properties of ZnO nanowires , 2004 .

[6]  A. Balandin,et al.  Interface and confined optical phonons in wurtzite nanocrystals , 2004, cond-mat/0405681.

[7]  Lide Zhang,et al.  The vibrational properties of one-dimensional ZnO:Ce nanostructures , 2004 .

[8]  Dapeng Yu,et al.  Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate , 2003 .

[9]  Dapeng Yu,et al.  Optical properties of the ZnO nanotubes synthesized via vapor phase growth , 2003 .

[10]  Bin Chen,et al.  Optical properties of single-crystalline ZnO nanowires on m-sapphire , 2003 .

[11]  J. Bläsing,et al.  Structural and optical properties of epitaxial and bulk ZnO , 2002 .

[12]  M. Rajalakshmi,et al.  Optical phonon confinement in zinc oxide nanoparticles , 2000 .

[13]  M. Dutta,et al.  Raman Scattering Spectroscopy and Analyses of III-V Nitride-Based Materials , 2000 .

[14]  R. Merlin,et al.  Raman scattering in materials science , 2000 .

[15]  M. Stroscio,et al.  COMPUTING CARRIER INTERACTIONS WITH CONFINED AND EXCLUDED PHONONS IN NANOSTRUCTURES OF COMPLEX GEOMETRIES , 1999 .

[16]  Mitra Dutta,et al.  Raman analysis of the E1 and A1 quasi-longitudinal optical and quasi-transverse optical modes in wurtzite AlN , 1999 .

[17]  V. Elesin,et al.  On the kinetic theory of the Quantum Cascade Laser , 1995 .

[18]  Philippe M. Fauchet,et al.  Raman spectroscopy of low-dimensional semiconductors , 1988 .

[19]  Richard M. Martin,et al.  Light scattering study of boron nitride microcrystals , 1981 .

[20]  H. Bilz,et al.  Phonon Dispersion Relations in Insulators , 1979 .

[21]  Manuel Cardona,et al.  Resonant Raman scattering in ZnO , 1977 .

[22]  W. Richter Resonant Raman scattering in semiconductors , 1976 .

[23]  R. Loudon,et al.  The Raman effect in crystals , 1964 .

[24]  C. Raman,et al.  Scattering of Light in Crystals , 1945, Nature.