Logical Foundation for Logic Programming Based on First Order Linear Temporal Logic

[1]  Daniel Gallin,et al.  Intensional and Higher-Order Modal Logic , 1975 .

[2]  Andrzej Szalas,et al.  Incompleteness of First-Order Temporal Logic with Until , 1988, Theor. Comput. Sci..

[3]  Regimantas Pliuskevicius,et al.  Investigation of Finitary Calculus for a Discrete Linear Time Logic by means of Infinitary Calculus , 1991, Baltic Computer Science.

[4]  Martín Abadi,et al.  Temporal Logic Programming , 1989, J. Symb. Comput..

[5]  Yuri Gurevich,et al.  Logic in Computer Science , 1993, Current Trends in Theoretical Computer Science.

[6]  Grigori Mints,et al.  Gentzen-type systems and resolution rules. Part I. Propositional logic , 1990, Conference on Computer Logic.

[7]  Hiroya Kawai,et al.  Sequential Calculus for a First Order Infinitary Temporal Logic , 1987, Math. Log. Q..

[8]  Ildikó Sain,et al.  On the Strength of Temporal Proofs , 1989, Theor. Comput. Sci..

[9]  Dov M. Gabbay,et al.  METATEM: A Framework for Programming in Temporal Logic , 1989, REX Workshop.

[10]  Martín Abadi,et al.  The Power of Temporal Proofs , 1989, Theor. Comput. Sci..

[11]  Gopalan Nadathur,et al.  Uniform Proofs as a Foundation for Logic Programming , 1991, Ann. Pure Appl. Log..

[12]  Ildikó Sain,et al.  Henkin-type semantics for program-schemes to turn negative results to positive , 1979, FCT.

[13]  Fred Kröger,et al.  On the Interpretability of Arithmetic in Temporal Logic , 1990, Theor. Comput. Sci..

[14]  L. Ebner,et al.  Skolem's Method of Elimination of Positive Quantifiers in Sequential Calculi , 1971 .

[15]  Martín Abadi,et al.  A Timely Resolution , 1986, LICS.

[16]  Dov M. Gabbay Decidability of Some Intuitionistic Predicate Theories , 1972, J. Symb. Log..

[17]  Regimantas Pliuskevicius Investigation of Finitary Calculi for the Temporal Logics by Means of Infinitary Calculi , 1990, MFCS.