Wastewater microalgal production, nutrient removal and physiological adaptation in response to changes in mixing frequency.

[1]  Andy Shilton,et al.  Pond Treatment Technology , 2015 .

[2]  P. Broady,et al.  Seasonal variation in light utilisation, biomass production and nutrient removal by wastewater microalgae in a full-scale high-rate algal pond , 2014, Journal of Applied Phycology.

[3]  M. Turnbull,et al.  Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds. , 2014, Water research.

[4]  Z. Dubinsky,et al.  Quantum Yields in Aquatic Photosynthesis , 2013 .

[5]  Tom Van Gerven,et al.  Hydrodynamic evaluations in high rate algae pond (HRAP) design , 2013 .

[6]  R. Wijffels,et al.  Photosynthetic efficiency and oxygen evolution of Chlamydomonas reinhardtii under continuous and flashing light , 2013, Applied Microbiology and Biotechnology.

[7]  R. Craggs,et al.  Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production , 2012, Journal of Applied Phycology.

[8]  A. Shilton,et al.  Recycling algae to improve species control and harvest efficiency from a high rate algal pond. , 2011, Water research.

[9]  F. Bux,et al.  Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production , 2011 .

[10]  C. Bock,et al.  UPDATING THE GENUS DICTYOSPHAERIUM AND DESCRIPTION OF MUCIDOSPHAERIUM GEN. NOV. (TREBOUXIOPHYCEAE) BASED ON MORPHOLOGICAL AND MOLECULAR DATA 1 , 2011, Journal of phycology.

[11]  Luigi Naselli-Flores,et al.  Invited Review - Fight on Plankton! or, Phytoplankton Shape and Size as Adaptive Tools to Get Ahead in the Struggle for Life , 2011 .

[12]  J. Grobbelaar Microalgal biomass production: challenges and realities , 2010, Photosynthesis Research.

[13]  F. G. Acién,et al.  The oxygen evolution methodology affects photosynthetic rate measurements of microalgae in well‐defined light regimes , 2010, Biotechnology and bioengineering.

[14]  J. Grobbelaar,et al.  Upper limits of photosynthetic productivity and problems of scaling , 2009, Journal of Applied Phycology.

[15]  Raymond J. Ritchie,et al.  Consistent Sets of Spectrophotometric Chlorophyll Equations for Acetone, Methanol and Ethanol Solvents , 2006, Photosynthesis Research.

[16]  P. Falkowski,et al.  Scaling-up from nutrient physiology to the size-structure of phytoplankton communities , 2006 .

[17]  Annick Bricaud,et al.  Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations , 2004 .

[18]  S. Diehl,et al.  Performance of sinking and nonsinking phytoplankton taxa in a gradient of mixing depths , 2003 .

[19]  J. Huisman,et al.  How Do Sinking Phytoplankton Species Manage to Persist? , 2002, The American Naturalist.

[20]  J. Grobbelaar,et al.  Physiological and technological considerations for optimising mass algal cultures , 2000, Journal of Applied Phycology.

[21]  Franz J. Weissing,et al.  Critical depth and critical turbulence: Two different mechanisms for the development of phytoplankton blooms , 1999 .

[22]  Hu Qiang,et al.  Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria) , 1998 .

[23]  A. Mazumder,et al.  Sedimentation of algae: relationships with biomass and size distribution , 1996 .

[24]  H. Claustre,et al.  Variability in the chlorophyll‐specific absorption coefficients of natural phytoplankton: Analysis and parameterization , 1995 .

[25]  K. Sand‐Jensen,et al.  Size-dependent nitrogen uptake in micro- and macroalgae , 1995 .

[26]  J. Grobbelaar Turbulence in mass algal cultures and the role of light/dark fluctuations , 1994, Journal of Applied Phycology.

[27]  B. Osborne,et al.  Light and Photosynthesis in Aquatic Ecosystems. , 1985 .

[28]  Colin S. Reynolds,et al.  Phytoplankton periodicity: the interactions of form, function and environmental variability , 1984 .

[29]  A. Bricaud,et al.  Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton , 1981 .

[30]  G. Oron,et al.  Algal polymorphism in high rate wastewater treatment ponds , 1981, Hydrobiologia.

[31]  W. Thomas,et al.  COMPARISON OF HALF‐SATURATION CONSTANTS FOR GROWTH AND NITRATE UPTAKE OF MARINE PHYTOPLANKTON 2 , 1969, Journal of phycology.

[32]  G. E. Hutchinson,et al.  A Treatise on Limnology Vol. II: Introduction to Lake Biology and the Limnoplankton , 1967 .

[33]  B. Whitton,et al.  The Freshwater Algal Flora of the British Isles , 2021 .

[34]  A. Shilton,et al.  Wastewater treatment high rate algal ponds for biofuel production. , 2011, Bioresource technology.

[35]  Zoe V. Finkel,et al.  Phytoplankton in a changing world: cell size and elemental stoichiometry , 2010 .

[36]  John R. Benemann,et al.  BIOFIXATION OF CO 2 AND GREENHOUSE GAS ABATEMENT WITH MICROALGAE - TECHNOLOGY ROADMAP , 2003 .

[37]  L. Legendre,et al.  Size-related photosynthetic characteristics of phytoplankton during periods of seasonal mixing and stratification in an oligotrophic multibasin lake system , 1996 .

[38]  J. Grobbelaar,et al.  The influence of light/dark cycles in mixed algal cultures on their productivity , 1991 .

[39]  Spencer L. SooHoo,et al.  Spectral light absorption and quantum yield of photosynthesis in sea ice microalgae and a bloom of Phaeocystis pouchetii from McMurdo Sound, Antarctica , 1987 .

[40]  Colin S. Reynolds,et al.  The ecology of freshwater phytoplankton , 1984 .

[41]  V. Cassie A GUIDE TO ALGAE IN OXIDATION PONDS IN THE AUCKLAND DISTRICT , 1983 .

[42]  C. Reynolds,et al.  Sinking losses of phytoplankton in closed limnetic systems , 1982 .

[43]  Trevor Platt,et al.  Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton , 1980 .