Enhancement of spontaneous emission in Tamm plasmon structures
暂无分享,去创建一个
A. Lemaître | P. Senellart | C. Symonds | J. Bellessa | E. D. Kolykhalova | M. Kaliteevski | M. Sasin | K. Ivanov | A. Gubaydullin | G. Pozina
[1] M. Bayer,et al. Photon echoes from (In,Ga)As quantum dots embedded in a Tamm-plasmon microcavity , 2017, 1701.03355.
[2] V. Mazlin,et al. Quantization of electromagnetic field and analysis of Purcell effect based on formalism of scattering matrix , 2016 .
[3] Yuri S. Kivshar,et al. Purcell effect and Lamb shift as interference phenomena , 2016, Scientific Reports.
[4] G. Kumar,et al. Interaction of Surface Plasmon Polaritons with Nanomaterials , 2016 .
[5] J. Khurgin. How to deal with the loss in plasmonics and metamaterials. , 2014, Nature nanotechnology.
[6] M. A. Kaliteevski,et al. Experimental Demonstration of Reduced Light Absorption by Intracavity Metallic Layers in Tamm Plasmon-based Microcavity , 2015, Plasmonics.
[7] M. Kaliteevski,et al. Single and double bosonic stimulation of THz emission in polaritonic systems , 2014, Scientific Reports.
[8] A. M. Merzlikin,et al. Approach to visualization of and optical sensing by Bloch surface waves in noble or base metal-based plasmonic photonic crystal slabs. , 2014, Applied optics.
[9] A. Lemaître,et al. Confined Tamm plasmon lasers. , 2013, Nano letters.
[10] van Pj René Veldhoven,et al. Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. , 2012, Optics express.
[11] Alexandre G. Brolo,et al. Plasmonics for future biosensors , 2012, Nature Photonics.
[12] A. Lemaître,et al. Single photon source using confined Tamm plasmon modes , 2012 .
[13] A. Zakhidov,et al. Phase-locked coherent modes in a patterned metal–organic microcavity , 2012, Nature Photonics.
[14] K. Merghem,et al. Ultrafast response of tunnel injected quantum dot based semiconductor optical amplifiers in the 1300 nm range , 2012 .
[15] M. Stockman. Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.
[16] J. Baumberg,et al. Bragg polaritons: strong coupling and amplification in an unfolded microcavity. , 2010, Physical Review Letters.
[17] J. M. Chamberlain,et al. Tamm plasmon polaritons: Slow and spatially compact light , 2008 .
[18] A. M. Merzlikin,et al. Optical Tamm states in one-dimensional magnetophotonic structures. , 2008, Physical review letters.
[19] J. M. Chamberlain,et al. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror , 2007 .
[20] G. Shvets,et al. Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays. , 2007, Physical review letters.
[21] Joseph Irudayaraj,et al. Multiplex biosensor using gold nanorods. , 2007, Analytical chemistry.
[22] N. Gordeev,et al. Observation of the biexponential ground-state decay time behavior in InAs self-assembled quantum dots grown on misoriented substrates , 2005 .
[23] W. Barnes,et al. Surface plasmon subwavelength optics , 2003, Nature.
[24] S. G. Konnikov,et al. Photocurrent and capacitance spectroscopy of Schottky barrier structures incorporating InAs/GaAs quantum dots , 2002 .
[25] Y. Rahmat-Samii,et al. Smallest possible electromagnetic mode volume in a dielectric cavity : Photonic crystals and microstructures , 1998 .
[26] M. Majewski,et al. Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.
[27] Loudon,et al. Spontaneous emission in the optical microscopic cavity. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[28] M. Fleischmann,et al. Raman spectra of pyridine adsorbed at a silver electrode , 1974 .
[29] H. Kogelnik,et al. Coupled‐Wave Theory of Distributed Feedback Lasers , 1972 .
[30] E. Purcell,et al. Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .