Enhancement of spontaneous emission in Tamm plasmon structures

[1]  M. Bayer,et al.  Photon echoes from (In,Ga)As quantum dots embedded in a Tamm-plasmon microcavity , 2017, 1701.03355.

[2]  V. Mazlin,et al.  Quantization of electromagnetic field and analysis of Purcell effect based on formalism of scattering matrix , 2016 .

[3]  Yuri S. Kivshar,et al.  Purcell effect and Lamb shift as interference phenomena , 2016, Scientific Reports.

[4]  G. Kumar,et al.  Interaction of Surface Plasmon Polaritons with Nanomaterials , 2016 .

[5]  J. Khurgin How to deal with the loss in plasmonics and metamaterials. , 2014, Nature nanotechnology.

[6]  M. A. Kaliteevski,et al.  Experimental Demonstration of Reduced Light Absorption by Intracavity Metallic Layers in Tamm Plasmon-based Microcavity , 2015, Plasmonics.

[7]  M. Kaliteevski,et al.  Single and double bosonic stimulation of THz emission in polaritonic systems , 2014, Scientific Reports.

[8]  A. M. Merzlikin,et al.  Approach to visualization of and optical sensing by Bloch surface waves in noble or base metal-based plasmonic photonic crystal slabs. , 2014, Applied optics.

[9]  A. Lemaître,et al.  Confined Tamm plasmon lasers. , 2013, Nano letters.

[10]  van Pj René Veldhoven,et al.  Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. , 2012, Optics express.

[11]  Alexandre G. Brolo,et al.  Plasmonics for future biosensors , 2012, Nature Photonics.

[12]  A. Lemaître,et al.  Single photon source using confined Tamm plasmon modes , 2012 .

[13]  A. Zakhidov,et al.  Phase-locked coherent modes in a patterned metal–organic microcavity , 2012, Nature Photonics.

[14]  K. Merghem,et al.  Ultrafast response of tunnel injected quantum dot based semiconductor optical amplifiers in the 1300 nm range , 2012 .

[15]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[16]  J. Baumberg,et al.  Bragg polaritons: strong coupling and amplification in an unfolded microcavity. , 2010, Physical Review Letters.

[17]  J. M. Chamberlain,et al.  Tamm plasmon polaritons: Slow and spatially compact light , 2008 .

[18]  A. M. Merzlikin,et al.  Optical Tamm states in one-dimensional magnetophotonic structures. , 2008, Physical review letters.

[19]  J. M. Chamberlain,et al.  Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror , 2007 .

[20]  G. Shvets,et al.  Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays. , 2007, Physical review letters.

[21]  Joseph Irudayaraj,et al.  Multiplex biosensor using gold nanorods. , 2007, Analytical chemistry.

[22]  N. Gordeev,et al.  Observation of the biexponential ground-state decay time behavior in InAs self-assembled quantum dots grown on misoriented substrates , 2005 .

[23]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[24]  S. G. Konnikov,et al.  Photocurrent and capacitance spectroscopy of Schottky barrier structures incorporating InAs/GaAs quantum dots , 2002 .

[25]  Y. Rahmat-Samii,et al.  Smallest possible electromagnetic mode volume in a dielectric cavity : Photonic crystals and microstructures , 1998 .

[26]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[27]  Loudon,et al.  Spontaneous emission in the optical microscopic cavity. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[28]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[29]  H. Kogelnik,et al.  Coupled‐Wave Theory of Distributed Feedback Lasers , 1972 .

[30]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .