Relaxation of imprinted genes in human cancer

[1]  Y. Shugart,et al.  Maternal but not paternal transmission of 15q11–13–linked nondeletion Angelman syndrome leads to phenotypic expression , 1992, Nature Genetics.

[2]  P. Smith,et al.  Zinc finger point mutations within the WT1 gene in Wilms tumor patients. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Mannens,et al.  Imprinting and Beckwith-Wiedemann syndrome , 1992, The Lancet.

[4]  B. Tycko,et al.  Monoallelic expression of the human H19 gene , 1992, Nature Genetics.

[5]  C. Junien Beckwith-Wiedemann syndrome, tumourigenesis and imprinting. , 1992 .

[6]  M. Bartolomei,et al.  Physical linkage of two mammalian imprinted genes, H19 and insulin–like growth factor 2 , 1992, Nature genetics.

[7]  K. Tadokoro,et al.  Polymerase chain reaction (PCR) for detection of ApaI polymorphism at the insulin like growth factor II gene (IGF2). , 1991, Nucleic acids research.

[8]  A. Shuldiner,et al.  RNA template-specific PCR: an improved method that dramatically reduces false positives in RT-PCR. , 1991, BioTechniques.

[9]  M. Davisson,et al.  Report of the comparative committee for human, mouse and other rodents , 1991 .

[10]  M. Surani,et al.  Embryological and molecular investigations of parental imprinting on mouse chromosome 7 , 1991, Nature.

[11]  C. Junien,et al.  Uniparental paternal disomy in a genetic cancer-predisposing syndrome , 1991, Nature.

[12]  N. Hastie,et al.  Dads and disomy and disease , 1991, Nature.

[13]  M. Bartolomei,et al.  Parental imprinting of the mouse H19 gene , 1991, Nature.

[14]  K. Willison Opposite imprinting of the mouse Igf2 and Igf2r genes. , 1991, Trends in genetics : TIG.

[15]  Chris Graham,et al.  Genomic imprinting and the strange case of the insulin-like growth factor II receptor , 1991, Cell.

[16]  A. Efstratiadis,et al.  Parental imprinting of the mouse insulin-like growth factor II gene , 1991, Cell.

[17]  T. Ishikawa,et al.  Allelotype study of primary hepatocellular carcinoma. , 1991, Cancer research.

[18]  J. Cowell,et al.  Loss of heterozygosity in Wilms' tumour involves two distinct regions of chromosome 11. , 1990, Oncogene.

[19]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.

[20]  R. Vollmer,et al.  Loss of heterozygosity for genes on 11p and the clinical course of patients with lung carcinoma. , 1990, Cancer research.

[21]  L. Dubeau,et al.  Loss of heterozygosity on chromosomal segments 3p, 6q and 11p in human ovarian carcinomas. , 1990, Oncogene.

[22]  E. Dees,et al.  The product of the H19 gene may function as an RNA , 1990, Molecular and cellular biology.

[23]  J. Knoll,et al.  Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome , 1989, Nature.

[24]  A. Reeve,et al.  Loss of allelic heterozygosity at a second locus on chromosome 11 in sporadic Wilms' tumor cells , 1989, Molecular and cellular biology.

[25]  Iqbal Unnisa Ali,et al.  Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia , 1987 .

[26]  K. Mullis,et al.  Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. , 1985, Science.

[27]  M. Eccles,et al.  Expression of insulin-like growth factor-II transcripts in Wilms' tumour , 1985, Nature.

[28]  A. Feinberg,et al.  Hypomethylation of DNA from benign and malignant human colon neoplasms. , 1985, Science.

[29]  G. Church,et al.  Genomic sequencing. , 1993, Methods in molecular biology.

[30]  A. Feinberg,et al.  Hypomethylation distinguishes genes of some human cancers from their normal counterparts , 1983, Nature.

[31]  Harlan I. Firminger,et al.  Atlas of tumor pathology , 1954 .