Inertial migration and multiple equilibrium positions of a neutrally buoyant spherical particle in Poiseuille flow

The radial migration of a single neutrally buoyant particle in Poiseuille flow is numerically investigated by direct numerical simulations. The simulation results show that the Segré and Silberberg equilibrium position moves towards the wall as the Reynolds number increases and as the particle size decreases. At high Reynolds numbers, inner equilibrium positions are found at positions closer to the centerline and move towards the centerline as the Reynolds number increases. At higher Reynolds numbers, the Segré and Silberberg equilibrium position disappears and only the inner equilibrium position exists. We prove that the inner annuluses in the measurements of Matas, Morris & Guazzelli (J. Fluid Mech.515, 171–195, 2004) are not transient radial positions, but are real equilibrium positions. The results on the inner equilibrium positions and unstable equilibrium positions are new and convince us of the existence of multiple equilibrium radial positions for neutrally buoyant particles.

[1]  Howard H. Hu,et al.  Direct simulation of fluid particle motions , 1992 .

[2]  Neelesh A. Patankar,et al.  Lift-off of a single particle in Newtonian and viscoelastic fluids by direct numerical simulation , 2001, Journal of Fluid Mechanics.

[3]  S. G. Mason,et al.  The flow of suspensions through tubes. I. Single spheres, rods, and discs , 1962 .

[4]  Elisabeth Guazzelli,et al.  Inertial migration of rigid spherical particles in Poiseuille flow , 2004, Journal of Fluid Mechanics.

[5]  Daniel D. Joseph,et al.  Slip velocity and lift , 2002, Journal of Fluid Mechanics.

[6]  Lift forces on a cylindrical particle in plane Poiseuille flow of shear thinning fluids , 2003 .

[7]  S. I. Rubinow,et al.  The transverse force on a spinning sphere moving in a viscous fluid , 1961, Journal of Fluid Mechanics.

[8]  R. Eichhorn,et al.  Experiments on the lift and drag of spheres suspended in a Poiseuille flow , 1964, Journal of Fluid Mechanics.

[9]  S. G. Mason,et al.  THE MICRORHEOLOGY OF DISPERSIONS , 1967 .

[10]  F. Bretherton The motion of rigid particles in a shear flow at low Reynolds number , 1962, Journal of Fluid Mechanics.

[11]  Evgeny S. Asmolov,et al.  The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number , 1999, Journal of Fluid Mechanics.

[12]  E. Leonard,et al.  Segré-Silberberg Annulus Formation : A Possible Explanation , 1964, Nature.

[13]  Howard H. Hu Direct simulation of flows of solid-liquid mixtures , 1996 .

[14]  L. G. Leal,et al.  Inertial migration of rigid spheres in two-dimensional unidirectional flows , 1974, Journal of Fluid Mechanics.

[15]  Jing Wang,et al.  Migration of a sphere in tube flow , 2005, Journal of Fluid Mechanics.

[16]  G. Segré,et al.  Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation , 1962, Journal of Fluid Mechanics.

[17]  Hiroshi AOKl,et al.  Study on the Tubular Pinch Effect in a Pipe Flow : I. Lateral migration of a single particle in laminar poiseuille flow , 1979 .

[18]  S. G. Mason,et al.  The flow of suspensions through tubes: V. Inertial effects , 1966 .

[19]  G. Segré,et al.  Radial Particle Displacements in Poiseuille Flow of Suspensions , 1961, Nature.

[20]  D. R. Oliver Influence of Particle Rotation on Radial Migration in the Poiseuille Flow of Suspensions , 1962, Nature.

[21]  J. S. Halow,et al.  Radial migration of spherical particles in couette systems , 1970 .

[22]  P. Saffman The lift on a small sphere in a slow shear flow , 1965, Journal of Fluid Mechanics.

[23]  M. Tachibana,et al.  On the behaviour of a sphere in the laminar tube flows , 1973 .

[24]  R. C. Jeffrey,et al.  Particle motion in laminar vertical tube flow , 1965, Journal of Fluid Mechanics.

[25]  E. J. Hinch,et al.  Inertial migration of a sphere in Poiseuille flow , 1989, Journal of Fluid Mechanics.

[26]  Howard H. Hu,et al.  Direct numerical simulations of fluid-solid systems using the arbitrary Langrangian-Eulerian technique , 2001 .

[27]  Daniel D. Joseph,et al.  Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows , 1994, Journal of Fluid Mechanics.

[28]  Elisabeth Guazzelli,et al.  Lateral Forces on a Sphere , 2004 .

[29]  Lift and multiple equilibrium positions of a single particle in Newtonian and Oldroyd-B fluids , 2006 .

[30]  Minsoo Han,et al.  Particle migration in tube flow of suspensions , 1999 .