Nitsche’s method for finite deformation thermomechanical contact problems

This paper presents an extension of Nitsche’s method to finite deformation thermomechanical contact problems including friction. The mechanical contact constraints, i.e. non-penetration and Coulomb’s law of friction, are introduced into the weak form using a stabilizing consistent penalty term. The required penalty parameter is estimated with local generalized eigenvalue problems, based on which an additional harmonic weighting of the boundary traction is introduced. A special focus is put on the enforcement of the thermal constraints at the contact interface, namely heat conduction and frictional heating. Two numerical methods to introduce these effects are presented, a substitution method as well as a Nitsche-type approach. Numerical experiments range from two-dimensional frictionless thermo-elastic problems demonstrating optimal convergence rates to three-dimensional thermo-elasto-plastic problems including friction.

[1]  L. Johansson,et al.  Thermoelastic frictional contact problems: Modelling, finite element approximation and numerical realization , 1993 .

[2]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[3]  T. Baumberger,et al.  Physical analysis of the state- and rate-dependent friction law: Static friction , 1999 .

[4]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[5]  Barbara Wohlmuth,et al.  Isogeometric dual mortar methods for computational contact mechanics , 2016 .

[6]  Wolfgang A. Wall,et al.  A monolithic computational approach to thermo‐structure interaction , 2013 .

[7]  J. C. Simo,et al.  Associated coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation , 1992 .

[8]  P. Wriggers,et al.  Real contact mechanisms and finite element formulation—a coupled thermomechanical approach , 1992 .

[9]  Tod A. Laursen,et al.  A finite element formulation of thermomechanical rate‐dependent frictional sliding , 1997 .

[10]  Michael Griebel,et al.  A Particle-Partition of Unity Method Part V: Boundary Conditions , 2003 .

[11]  Barbara Wohlmuth,et al.  Thermo-mechanical contact problems on non-matching meshes , 2009 .

[12]  Glen Hansen,et al.  A Jacobian-free Newton Krylov method for mortar-discretized thermomechanical contact problems , 2011, J. Comput. Phys..

[13]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[14]  Peter Wriggers,et al.  Contact treatment in isogeometric analysis with NURBS , 2011 .

[15]  Klaus-Jürgen Bathe,et al.  A finite element procedure for the analysis of thermo-mechanical solids in contact , 2000 .

[16]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[17]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[18]  Barbara Wohlmuth,et al.  Nonlinear complementarity functions for plasticity problems with frictional contact , 2009 .

[19]  Barbara Wohlmuth,et al.  An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements , 2012 .

[20]  Erik Burman,et al.  Numerical Approximation of Large Contrast Problems with the Unfitted Nitsche Method , 2011 .

[21]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[22]  Franz Chouly,et al.  Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments , 2014, Math. Comput..

[23]  I. Temizer,et al.  Multiscale thermomechanical contact: Computational homogenization with isogeometric analysis , 2014 .

[24]  W. Wall,et al.  A Nitsche cut finite element method for the Oseen problem with general Navier boundary conditions , 2017, 1706.05897.

[25]  Franz Chouly,et al.  An adaptation of Nitscheʼs method to the Tresca friction problem , 2014 .

[26]  Yves Renard,et al.  Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity , 2013 .

[27]  H. Xing,et al.  Three dimensional finite element modeling of thermomechanical frictional contact between finite deformation bodies using R-minimum strategy , 2002 .

[28]  C. A. Saracibar Numerical analysis of coupled thermomechanical frictional contact problems. Computational model and applications , 1998 .

[29]  Roger A. Sauer,et al.  An unbiased computational contact formulation for 3D friction , 2015 .

[30]  Barbara Wohlmuth,et al.  A primal–dual active set strategy for non-linear multibody contact problems , 2005 .

[31]  Marlon Franke,et al.  Isogeometric Analysis and thermomechanical Mortar contact problems , 2014 .

[32]  Peter Wriggers,et al.  Contact constraints within coupled thermomechanical analysis—A finite element model , 1994 .

[33]  A. Klarbring,et al.  Continuum Mechanics Modelling of Large Deformation Contact with Friction , 1995 .

[34]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[35]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[36]  Wolfgang A. Wall,et al.  Unified computational framework for the efficient solution of n-field coupled problems with monolithic schemes , 2016, 1605.01522.

[37]  Konstantinos Poulios,et al.  An unconstrained integral approximation of large sliding frictional contact between deformable solids , 2015 .

[38]  Wolfgang A. Wall,et al.  A dual mortar approach for 3D finite deformation contact with consistent linearization , 2010 .

[39]  D. Owen,et al.  Design of simple low order finite elements for large strain analysis of nearly incompressible solids , 1996 .

[40]  John E. Dolbow,et al.  A robust Nitsche’s formulation for interface problems , 2012 .

[41]  Peter Hansbo,et al.  Nitsche's method for interface problems in computa‐tional mechanics , 2005 .

[42]  P. Wriggers,et al.  A formulation for frictionless contact problems using a weak form introduced by Nitsche , 2007 .

[43]  Wolfgang A. Wall,et al.  Finite deformation frictional mortar contact using a semi‐smooth Newton method with consistent linearization , 2010 .

[44]  Barbara Wohlmuth,et al.  Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.

[45]  Wolfgang A. Wall,et al.  A computational approach for thermo-elasto-plastic frictional contact based on a monolithic formulation using non-smooth nonlinear complementarity functions , 2018, Adv. Model. Simul. Eng. Sci..

[46]  Franz Chouly,et al.  A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis , 2013, SIAM J. Numer. Anal..

[47]  W. Wall,et al.  Algebraic multigrid methods for dual mortar finite element formulations in contact mechanics , 2018 .

[48]  Wolfgang A. Wall,et al.  Segment-based vs. element-based integration for mortar methods in computational contact mechanics , 2015 .

[49]  Franz Chouly,et al.  An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact , 2017 .

[50]  Barbara I. Wohlmuth,et al.  A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction , 2008, SIAM J. Sci. Comput..

[51]  Wolfgang A. Wall,et al.  A finite deformation mortar contact formulation using a primal–dual active set strategy , 2009 .

[52]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .