Cayley Digraphs of Finite Abelian Groups and Monomial Ideals

In the study of double-loop computer networks, the diagrams known as L-shapes arise as a graphical representation of an optimal routing for every graph's node. The description of these diagrams provides an efficient method for computing the diameter and the average minimum distance of the corresponding graphs. We extend these diagrams to multiloop computer networks. For each Cayley digraph with a finite abelian group as vertex set, we define a monomial ideal and consider its representations via its minimal system of generators or its irredundant irreducible decomposition. From this last piece of information, we can compute the graph's diameter and average minimum distance. That monomial ideal is the initial ideal of a certain lattice with respect to a graded monomial ordering. This result permits the use of Grobner bases for computing the ideal and finding an optimal routing. Finally, we present a family of Cayley digraphs parametrized by their diameter $d$, all of them associated to irreducible monomial ideals.

[1]  B. Sturmfels,et al.  Binomial Ideals , 1994, alg-geom/9401001.

[2]  D. Frank Hsu,et al.  Extremal Problems in the Construction of Distributed Loop Networks , 1994, SIAM J. Discret. Math..

[3]  F. Aguiló,et al.  An efficient algorithm to find optimal double loop networks , 1995, Discret. Math..

[4]  Tomaz Pisanski,et al.  Computing the Diameter in Multiple-Loop Networks , 1993, J. Algorithms.

[5]  Frank K. Hwang,et al.  A complementary survey on double-loop networks , 2001, Theor. Comput. Sci..

[6]  Ezra Miller,et al.  Resolutions and Duality for Monomial Ideals , 2000 .

[7]  Ravi Kannan,et al.  Minkowski's Convex Body Theorem and Integer Programming , 1987, Math. Oper. Res..

[8]  Ding-Zhu Du,et al.  Doubly Linked Ring Networks , 1985, IEEE Transactions on Computers.

[9]  Mateo Valero,et al.  Discrete Optimization Problem in Local Networks and Data Alignment , 1987, IEEE Transactions on Computers.

[10]  Igor E. Shparlinski,et al.  Predicting nonlinear pseudorandom number generators , 2004, Math. Comput..

[11]  Domingo Gómez-Pérez,et al.  Circulant Digraphs and Monomial Ideals , 2005, CASC.

[12]  Ralph Tindell,et al.  Circulants and their connectivities , 1984, J. Graph Theory.

[13]  D. Frank Hsu,et al.  Distributed Loop Computer Networks: A Survey , 1995, J. Parallel Distributed Comput..

[14]  Bernard Mans,et al.  On Routing in Circulant Graphs , 1999, COCOON.

[15]  Jaime Gutierrez,et al.  Reduced Gröbner Bases Under Composition , 1998, J. Symb. Comput..

[16]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[17]  Ming T. Liu Distributed Loop Computer Networks , 1978, Adv. Comput..

[18]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[19]  Paul Erdös,et al.  Distributed Loop Network with Minimum Transmission Delay , 1992, Theor. Comput. Sci..

[20]  Friedrich Eisenbrand,et al.  Fast Integer Programming in Fixed Dimension , 2003, ESA.

[21]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[22]  Shafi Goldwasser,et al.  Complexity of lattice problems , 2002 .

[23]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[24]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[25]  Domingo Gómez-Pérez,et al.  Optimal routing in double loop networks , 2007, Theor. Comput. Sci..

[26]  Bernd Sturmfels,et al.  Monomial Ideals and Planar Graphs , 1999, AAECC.

[27]  Ying Cheng,et al.  Diameters of Weighted Double Loop Networks , 1988, J. Algorithms.

[28]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[29]  임종인,et al.  Gröbner Bases와 응용 , 1995 .

[30]  Frank K. Hwang,et al.  A survey on multi-loop networks , 2003, Theor. Comput. Sci..

[31]  Bernd Sturmfels,et al.  Gröbner bases of lattices, corner polyhedra, and integer programming. , 1995 .

[32]  Chak-Kuen Wong,et al.  A Combinatorial Problem Related to Multimodule Memory Organizations , 1974, JACM.

[33]  Bernard Mans Optimal Distributed Algorithms in Unlabeled Tori and Chordal Rings , 1997, J. Parallel Distributed Comput..