Expression profiling of drug response - from genes to pathways

Understanding individual response to a drug -what determines its efficacy and tolerability -is the major bottleneck in current drug development and clinical trials. Intracellular response and metabolism, for example through cytochrome P-450 enzymes, may either enhance or decrease the effect of different drugs, dependent on the genetic variant. Microarrays offer the potential to screen the genetic composition of the individual patient However, experiments are «noisy» and must be accompanied by solid and robust data analysis. Furthermore, recent research aims at the combination of high-throughput data with methods of mathematical modeling, enabling problem-oriented assistance in the drug discovery process. This article will discuss state-of-the-art DNA array technology platforms and the basic elements of data analysis and bioinformatics research in drug discovery. Enhancing single-gene analysis, we will present a new method for interpreting gene expression changes in the context of entire pathways. Furthermore, we will introduce the concept of systems biology as a new paradigm for drug development and highlight our recent research - the development of a modeling and simulation platform for biomedical applications. We discuss the potentials of systems biology for modeling the drug response of the individual patient.

[1]  Howard L McLeod,et al.  Pharmacogenomics--drug disposition, drug targets, and side effects. , 2003, The New England journal of medicine.

[2]  John Quackenbush Microarray data normalization and transformation , 2002, Nature Genetics.

[3]  Pat Levitt,et al.  Molecular Characterization of Schizophrenia Viewed by Microarray Analysis of Gene Expression in Prefrontal Cortex , 2000, Neuron.

[4]  Roded Sharan,et al.  Center CLICK: A Clustering Algorithm with Applications to Gene Expression Analysis , 2000, ISMB.

[5]  Gene Ontology Consortium,et al.  The Gene Ontology (GO) project in 2006 , 2005, Nucleic Acids Res..

[6]  G. Lennon,et al.  Hybridization analyses of arrayed cDNA libraries. , 1991, Trends in genetics : TIG.

[7]  Sergio Contrino,et al.  ArrayExpress—a public repository for microarray gene expression data at the EBI , 2004, Nucleic Acids Res..

[8]  J. Olson,et al.  Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects. , 2002, Human molecular genetics.

[9]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[10]  Pat Levitt,et al.  Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse , 2001, Trends in Neurosciences.

[11]  Michael G. Barnes,et al.  Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms , 2005, Nucleic acids research.

[12]  R. Weinshilboum Inheritance and drug response. , 2003, The New England journal of medicine.

[13]  A. Hoffmann,et al.  The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. , 2002, Science.

[14]  Gary Hardiman,et al.  Microarray platforms--comparisons and contrasts. , 2004, Pharmacogenomics.

[15]  U. Bhalla,et al.  Emergent properties of networks of biological signaling pathways. , 1999, Science.

[16]  H. Kitano,et al.  A comprehensive pathway map of epidermal growth factor receptor signaling , 2005, Molecular systems biology.

[17]  D. Koller,et al.  From signatures to models: understanding cancer using microarrays , 2005, Nature Genetics.

[18]  R. Bronson,et al.  A mouse model for Down syndrome exhibits learning and behaviour deficits , 1995, Nature Genetics.

[19]  R. Lempicki,et al.  Evaluation of gene expression measurements from commercial microarray platforms. , 2003, Nucleic acids research.

[20]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings , 1997 .

[21]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[22]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[23]  Russ B. Altman,et al.  PharmGKB: the Pharmacogenetics Knowledge Base , 2002, Nucleic Acids Res..

[24]  Hans Lehrach,et al.  GOblet: a platform for Gene Ontology annotation of anonymous sequence data , 2004, Nucleic Acids Res..

[25]  Monika Milewski,et al.  Decoding randomly ordered DNA arrays. , 2004, Genome research.

[26]  J. Mesirov,et al.  Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[28]  Jonathan Pevsner,et al.  Progress in the use of microarray technology to study the neurobiology of disease , 2004, Nature Neuroscience.

[29]  H. Lehrach,et al.  Cross-species hybridisation of human and bovine orthologous genes on high density cDNA microarrays , 2004, BMC Genomics.

[30]  E. Gilles,et al.  Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors , 2002, Nature Biotechnology.

[31]  Hans Lehrach,et al.  Automated Gene Ontology annotation for anonymous sequence data , 2003, Nucleic Acids Res..

[32]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[33]  Dalia Cohen,et al.  Functional genomics to new drug targets , 2004, Nature Reviews Drug Discovery.

[34]  J. Pierri,et al.  Gene Expression Profiling Reveals Alterations of Specific Metabolic Pathways in Schizophrenia , 2002, The Journal of Neuroscience.

[35]  Pascal Kahlem,et al.  A gene expression map of human chromosome 21 orthologues in the mouse , 2002, Nature.

[36]  Leroy Hood,et al.  The impact of systems approaches on biological problems in drug discovery , 2004, Nature Biotechnology.

[37]  Ralf Herwig,et al.  Simulation of DNA array hybridization experiments and evaluation of critical parameters during subsequent image and data analysis , 2002, BMC Bioinformatics.

[38]  Hans Lehrach,et al.  Automated image analysis for array hybridization experiments , 2001, Bioinform..

[39]  Sorin Drăghici,et al.  Data Analysis Tools for DNA Microarrays , 2003 .

[40]  Russ B Altman,et al.  PharmGKB: the pharmacogenetics and pharmacogenomics knowledge base. , 2005, Methods in molecular biology.

[41]  D. Gerhold,et al.  Better therapeutics through microarrays , 2002, Nature Genetics.

[42]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[43]  P. Brown,et al.  Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Lucila Ohno-Machado,et al.  Analysis of matched mRNA measurements from two different microarray technologies , 2002, Bioinform..

[45]  R. Myers,et al.  Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data , 2005, Nucleic acids research.

[46]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[47]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Cheng Cheng,et al.  Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. , 2004, The New England journal of medicine.

[49]  R V Jensen,et al.  Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  W. Markesbery,et al.  Incipient Alzheimer's disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[51]  T. Barrette,et al.  Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. , 2002, Cancer research.

[52]  D. Stephan,et al.  Integrating microarrays into disease-gene identification strategies , 2003, Expert review of molecular diagnostics.

[53]  A. Hoffmann,et al.  The I (cid:1) B –NF-(cid:1) B Signaling Module: Temporal Control and Selective Gene Activation , 2022 .

[54]  P. Bork,et al.  Bioinformatics in the post-sequence era , 2003, Nature Genetics.

[55]  Samuel S Newton,et al.  Production of custom microarrays for neuroscience research. , 2005, Methods.

[56]  S. Nelson,et al.  DNA-microarray analysis of brain cancer: molecular classification for therapy , 2004, Nature Reviews Neuroscience.

[57]  Francis D. Gibbons,et al.  Judging the quality of gene expression-based clustering methods using gene annotation. , 2002, Genome research.

[58]  R. Sharan,et al.  CLICK: a clustering algorithm with applications to gene expression analysis. , 2000, Proceedings. International Conference on Intelligent Systems for Molecular Biology.

[59]  D. Lockhart,et al.  Expression monitoring by hybridization to high-density oligonucleotide arrays , 1996, Nature Biotechnology.

[60]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[61]  C. Müller,et al.  Large-scale clustering of cDNA-fingerprinting data. , 1999, Genome research.

[62]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.

[63]  E. Kunkel Systems biology in drug discovery , 2004, Nature Biotechnology.

[64]  S. Dudoit,et al.  Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. , 2002, Nucleic acids research.

[65]  Yudong D. He,et al.  Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer , 2001, Nature Biotechnology.

[66]  S. Lampel,et al.  The druggable genome: an update. , 2005, Drug discovery today.

[67]  S. South,et al.  Transcript level alterations reflect gene dosage effects across multiple tissues in a mouse model of down syndrome. , 2004, Genome research.

[68]  Kwang-Hyun Cho,et al.  Investigations Into the Analysis and Modeling of the TNFα-Mediated NF-κB-Signaling Pathway , 2003 .

[69]  Travis Dunckley,et al.  Discovery and development of biomarkers of neurological disease. , 2005, Drug discovery today.

[70]  Ajay N. Jain,et al.  Fully automatic quantification of microarray image data. , 2002, Genome research.

[71]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[72]  C. Li,et al.  Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[73]  C A Ross,et al.  Decreased expression of striatal signaling genes in a mouse model of Huntington's disease. , 2000, Human molecular genetics.

[74]  Howard Y. Chang,et al.  Genetic regulators of large-scale transcriptional signatures in cancer , 2006, Nature Genetics.

[75]  Kwang-Hyun Cho,et al.  Investigations into the analysis and modeling of the TNF alpha-mediated NF-kappa B-signaling pathway. , 2003, Genome research.

[76]  Philippe Rigault,et al.  A novel, high-performance random array platform for quantitative gene expression profiling. , 2004, Genome research.

[77]  D. Lauffenburger,et al.  Computational modeling of the EGF-receptor system: a paradigm for systems biology. , 2003, Trends in cell biology.

[78]  Hongyue Dai,et al.  A microarray platform comparison for neuroscience applications , 2004, Journal of Neuroscience Methods.

[79]  Ralf Herwig,et al.  Primary Differentiation in the Human Blastocyst: Comparative Molecular Portraits of Inner Cell Mass and Trophectoderm Cells , 2005, Stem cells.

[80]  G. Sobue,et al.  Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis , 2005, Annals of neurology.

[81]  R Herwig,et al.  Statistical evaluation of differential expression on cDNA nylon arrays with replicated experiments. , 2001, Nucleic acids research.

[82]  Dennis B. Troup,et al.  NCBI GEO: mining millions of expression profiles—database and tools , 2004, Nucleic Acids Res..