Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries

[1]  Jiaqi Huang,et al.  Perspective on the critical role of interface for advanced batteries , 2019, Journal of Energy Chemistry.

[2]  Jiaqi Huang,et al.  Lithium–matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries , 2019, Journal of Energy Chemistry.

[3]  Feng Wu,et al.  Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode , 2019, Journal of Energy Chemistry.

[4]  Ming Zhu,et al.  Recent advances in gel polymer electrolyte for high-performance lithium batteries , 2019, Journal of Energy Chemistry.

[5]  Lan Zhang,et al.  Electrolyte for lithium protection: From liquid to solid , 2019, Green Energy & Environment.

[6]  Chen‐Zi Zhao,et al.  Artificial Interphases for Highly Stable Lithium Metal Anode , 2019, Matter.

[7]  Rui Zhang,et al.  Dual‐Phase Single‐Ion Pathway Interfaces for Robust Lithium Metal in Working Batteries , 2019, Advanced materials.

[8]  Dingshan Yu,et al.  A review of rechargeable batteries for portable electronic devices , 2019, InfoMat.

[9]  Yao Zhou,et al.  Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries , 2019, Chinese Chemical Letters.

[10]  Quan-hong Yang,et al.  Promoted conversion of polysulfides by MoO2 inlaid ordered mesoporous carbons towards high performance lithium-sulfur batteries , 2019, Chinese Chemical Letters.

[11]  Jiaqi Huang,et al.  A metal nitride interlayer for long life lithium sulfur batteries , 2019, Journal of Energy Chemistry.

[12]  Chen‐Zi Zhao,et al.  Recent Advances in Energy Chemical Engineering of Next-Generation Lithium Batteries , 2018, Engineering.

[13]  Siyuan Li,et al.  Suppression of dendritic lithium growth in lithium metal-based batteries. , 2018, Chemical communications.

[14]  Qiang Zhang,et al.  Electronic and Ionic Channels in Working Interfaces of Lithium Metal Anodes , 2018, ACS Energy Letters.

[15]  Chong Yan,et al.  Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes , 2018 .

[16]  Jiaqi Huang,et al.  Two-dimensional vermiculite separator for lithium sulfur batteries , 2017 .

[17]  Yi-Chun Jin,et al.  Recent progresses in the suppression method based on the growth mechanism of lithium dendrite , 2017 .

[18]  Erjing Wang,et al.  Carbonyl polymeric electrode materials for metal-ion batteries , 2017 .

[19]  Jiehua Liu,et al.  Recent advances in electrocatalysts for non-aqueous Li-O 2 batteries , 2017 .

[20]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[21]  N. Imanishi,et al.  Surface Layer and Morphology of Lithium Metal Electrodes , 2016 .

[22]  Feng Wu,et al.  The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons , 2016 .

[23]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[24]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[25]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[26]  Qiang Zhang,et al.  Dendrite-free lithium metal anodes: stable solid electrolyte interphases for high-efficiency batteries , 2015 .

[27]  Jiulin Wang,et al.  Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility , 2014 .

[28]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[29]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[30]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .