Advances in Tailoring Resorcinol‐Formaldehyde Organic and Carbon Gels

An overview on the preparation and properties of resorcinol‐formaldehyde (RF) organic and carbon gels reveals the fascinating and remarkably flexible properties of RF carbon and organic gels and how these properties are related to the synthesis and processing conditions. The structural properties can be easily tailored by rigidly controlling such conditions. However, slight variations in some conditions may cause drastic variations in the structural characteristics, and hence properties. Therefore, the effects of different conditions must be well‐understood before attempting to tailor organic or carbon gels to specific applications. The most important factors that affect the properties of an organic gel are the precursor concentrations, the catalyst type and concentration, the time and temperature of curing, and the drying method. In addition to these factors, characteristics of activated carbon gels also depend on the pyrolysis temperature and the activation method. These conditions impact the structural and performance characteristics significantly.

[1]  A. Arenillas,et al.  A comparison of physical activation of carbon xerogels with carbon dioxide with chemical activation using hydroxides , 2010 .

[2]  J. Yi,et al.  Preparation of carbon aerogel in ambient conditions for electrical double-layer capacitor , 2010 .

[3]  J. J. Pis,et al.  Studying chemical activation in carbon xerogels , 2009, Journal of Materials Science.

[4]  N. Mansour,et al.  Synthesis and characterization of electrical conducting porous carbon structures based on resorcinol–formaldehyde , 2009 .

[5]  G. Reichenauer,et al.  Spherical porous carbon particles derived from suspensions and sediments of resorcinol–formaldehyde particles , 2009 .

[6]  L. P. Tan,et al.  Using oxidation to increase the electrical conductivity of carbon nanotube electrodes , 2009 .

[7]  P. Carrott,et al.  New carbon materials with high porosity in the 1―7 nm range obtained by chemical activation with phosphoric acid of resorcinol―formaldehyde aerogels , 2009 .

[8]  J. Figueiredo,et al.  Controlling the surface chemistry of carbon xerogels using HNO3-hydrothermal oxidation , 2009 .

[9]  G. Cao,et al.  Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen , 2009 .

[10]  Ashutosh Sharma,et al.  Synthesis of carbon xerogel particles and fractal-like structures , 2009 .

[11]  Yuping Wu,et al.  An activated carbon with high capacitance from carbonization of a resorcinol-formaldehyde resin , 2009 .

[12]  J. J. Pis,et al.  Tailoring the textural properties of activated carbon xerogels by chemical activation with KOH , 2008 .

[13]  Yi-Chun Chen,et al.  Novolak PF resins prepared from phenol liquefied Cryptomeria japonica and used in manufacturing moldings. , 2008, Bioresource technology.

[14]  P. Serp,et al.  MWCNT activation and its influence on the catalytic performance of Pt/MWCNT catalysts for selective hydrogenation , 2008 .

[15]  J. Figueiredo,et al.  Tuning of texture and surface chemistry of carbon xerogels. , 2008, Journal of colloid and interface science.

[16]  M. Crine,et al.  Evolution of mechanical properties and final textural properties of resorcinol-formaldehyde xerogels during ambient air drying , 2008 .

[17]  Z. Gabelica,et al.  Evaluation of carbon cryogels used as cathodes for non-flowing zinc–bromine storage cells , 2008 .

[18]  S. Arepalli,et al.  Effect of Mild Nitric Acid Oxidation on Dispersability, Size, and Structure of Single-Walled Carbon Nanotubes , 2007 .

[19]  M. Wang,et al.  Structure and electrochemical properties of resorcinol–formaldehyde polymer-based carbon for electric double-layer capacitors , 2007 .

[20]  P. Carrott,et al.  Use of n-nonane pre-adsorption for the determination of micropore volume of activated carbon aerogels , 2007 .

[21]  Zhihong Li,et al.  Bismaleimide Modified by Allyl Novolak for Superabrasives , 2007 .

[22]  M. Crine,et al.  Rheological determination of the sol-gel transition during the aqueous synthesis of resorcinol-formaldehyde resins , 2007 .

[23]  H. Tamon,et al.  Preparation of resorcinol formaldehyde (RF) carbon gels: Use of ultrasonic irradiation followed by microwave drying , 2006 .

[24]  B. Fang,et al.  A modified activated carbon aerogel for high-energy storage in electric double layer capacitors , 2006 .

[25]  M. Dresselhaus,et al.  Carbon aerogel spheres prepared via alcohol supercritical drying , 2006 .

[26]  D. Fairen-jimenez,et al.  Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts , 2006 .

[27]  B. Vertruyen,et al.  Carbon xerogels as catalyst supports: Study of mass transfer , 2006 .

[28]  K. László,et al.  Influence of drying on the morphology of resorcinol–formaldehyde-based carbon gels , 2005 .

[29]  J. Rouzaud,et al.  Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials , 2005 .

[30]  M. Crine,et al.  Suitability of convective air drying for the production of porous resorcinol–formaldehyde and carbon xerogels , 2005 .

[31]  B. Fang,et al.  A novel electrode material for electric double-layer capacitors , 2005 .

[32]  S. J. Kim,et al.  Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics , 2005 .

[33]  T. Baumann,et al.  Template-directed synthesis of periodic macroporous organic and carbon aerogels , 2004 .

[34]  Sung-Woo Hwang,et al.  Capacitance control of carbon aerogel electrodes , 2004 .

[35]  Hai-chao Liang,et al.  Electrochemical study of activated carbon-semiconducting oxide composites as electrode materials of double-layer capacitors , 2004 .

[36]  Chi-Chang Hu,et al.  Electrochemical characterization of activated carbon–ruthenium oxide nanoparticles composites for supercapacitors , 2004 .

[37]  Jochen Fricke,et al.  Carbon Aerogels for Electrochemical Double Layer Capacitors , 2003 .

[38]  R. Brandt,et al.  Acetic Acid Catalyzed Carbon Aerogels , 2003 .

[39]  F. J. Maldonado-Hódar,et al.  Physicochemical Surface Properties of Fe, Co, Ni, and Cu-Doped Monolithic Organic Aerogels , 2003 .

[40]  James A. Ritter,et al.  Preparation and Properties of Resorcinol–Formaldehyde Organic and Carbon Gels , 2003 .

[41]  D. Lozano‐Castelló,et al.  Can highly activated carbons be prepared with a homogeneous micropore size distribution , 2002 .

[42]  J. A. Ritter,et al.  Sol−Gel-Derived Carbon Aerogels and Xerogels: Design of Experiments Approach to Materials Synthesis , 2002 .

[43]  K. Gubbins,et al.  Nitrogen adsorption in carbon aerogels: A molecular simulation study , 2002 .

[44]  J. Choma,et al.  A model-independent analysis of nitrogen adsorption isotherms on oxidized active carbons , 2001 .

[45]  A. V. Rao,et al.  Small-angle X-ray scattering of a new series of organic aerogels , 2001 .

[46]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[47]  J. Fricke,et al.  Carbon Cloth Reinforced Carbon Aerogel Films Derived from Resorcinol Formaldehyde , 2001 .

[48]  I. Martín-Gullón,et al.  Activated carbons from bituminous coal: effect of mineral matter content , 2000 .

[49]  F. J. Maldonado-Hódar,et al.  Catalytic graphitization of carbon aerogels by transition metals , 2000 .

[50]  Jung-Hyun Kim,et al.  Synthesis of resorcinol/formaldehyde gel particles by the sol- emulsion–gel technique , 1998 .

[51]  H. Tamon,et al.  Control of mesoporous structure of organic and carbon aerogels , 1998 .

[52]  R. Pekala,et al.  Microporosity in carbon aerogels , 1998 .

[53]  S. Blacher,et al.  Texture control of freeze-dried resorcinol–formaldehyde gels , 1998 .

[54]  J. Fricke,et al.  Structure of carbon aerogels near the gelation limit of the resorcinol–formaldehyde precursor , 1998 .

[55]  S. Chaudhuri,et al.  Drying of aerogels in different solvents between atmospheric and supercritical pressures , 1998 .

[56]  Bruce Dunn,et al.  Carbon aerogels for electrochemical applications , 1998 .

[57]  A. Pierre,et al.  Introduction to Sol-Gel Processing , 1998 .

[58]  J. Fricke,et al.  Carbon aerogels from dilute catalysis of resorcinol with formaldehyde , 1997 .

[59]  J. Fricke,et al.  Structural Investigation of Resorcinol Formaldehyde and Carbon Aerogels Using SAXS and BET , 1997 .

[60]  J. Fricke,et al.  Carbon Aerogels as Electrode Material in Supercapacitors , 1997 .

[61]  S. Blacher,et al.  Freeze-dried resorcinol-formaldehyde gels , 1997 .

[62]  R. Pekala,et al.  New organic aerogels based upon a phenolic-furfural reaction☆ , 1995 .

[63]  J. A. Schwarz,et al.  Comparison of methods to assess surface acidic groups on activated carbons , 1992 .

[64]  R. Pekala,et al.  Carbon Aerogels and Xerogels , 1992 .

[65]  R. Pekala,et al.  Organic aerogels: microstructural dependence of mechanical properties in compression , 1990 .

[66]  R. Pekala,et al.  Organic aerogels from the polycondensation of resorcinol with formaldehyde , 1989 .

[67]  Andre Knop,et al.  Chemistry and Application of Phenolic Resins , 1984 .

[68]  F. Carmona,et al.  Electrical conductivity of low-temperature carbons as a function of frequency , 1978 .

[69]  Xianyou Wang,et al.  Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors , 2008 .

[70]  Wen‐Cui Li,et al.  Resorcinol-formaldehyde based porous carbon as an electrode material for supercapacitors , 2007 .

[71]  Weichao Yu,et al.  Synthesis of multi-shell carbon microspheres , 2006 .

[72]  Angélique Léonard,et al.  Synthesis optimization of organic xerogels produced from convective air-drying of resorcinol-formaldehyde gels , 2006 .

[73]  F. J. Maldonado-Hódar,et al.  Carbon aerogels for catalysis applications: An overview , 2005 .

[74]  H. Tamon,et al.  Improvement of mesoporosity of carbon cryogels by ultrasonic irradiation , 2005 .

[75]  T. Horikawa,et al.  Influence of surface-active agents on pore characteristics of the generated spherical resorcinol–formaldehyde based carbon aerogels , 2004 .

[76]  Nathalie Job,et al.  Porous carbon xerogels with texture tailored by pH control during sol–gel process , 2004 .

[77]  H. Tamon,et al.  Preparation of resorcinol–formaldehyde carbon cryogel microhoneycombs , 2004 .

[78]  T. Horikawa,et al.  Controllability of pore characteristics of resorcinol–formaldehyde carbon aerogel , 2004 .

[79]  Takashi Nakamura,et al.  Synthesis of amorphous carbon particles by an electric arc in the ultrasonic cavitation field of liquid benzene , 2004 .

[80]  D. Cazorla-Amorós,et al.  Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation , 2004 .

[81]  M. Dresselhaus,et al.  Preparation of low-density carbon aerogels by ambient pressure drying , 2004 .

[82]  F. J. Maldonado-Hódar,et al.  Morphology of heat-treated tunsgten doped monolithic carbon aerogels , 2003 .

[83]  James A. Ritter,et al.  Carbonization and activation of sol–gel derived carbon xerogels , 2000 .

[84]  H. Tamon,et al.  Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors , 2000 .

[85]  Takeo Suzuki,et al.  Preparation of mesoporous carbon by freeze drying , 1999 .

[86]  James A. Ritter,et al.  Effect of synthesis pH on the structure of carbon xerogels , 1997 .

[87]  D. Cazorla-Amorós,et al.  Selective porosity development by calcium-catalyzed carbon gasification , 1996 .

[88]  J. A. Menéndez,et al.  On the difference between the isoelectric point and the point of zero charge of carbons , 1995 .

[89]  H. V. Bekkum,et al.  Modification of the surfaces of a gasactivated carbon and a chemically activated carbon with nitric acid, hypochlorite, and ammonia , 1994 .

[90]  Y. Attia Sol-gel processing and applications , 1994 .

[91]  M. Vannice,et al.  A DRIFTS study of the formation of surface groups on carbon by oxidation , 1993 .

[92]  R. Jenkins,et al.  Characterization of oxygen-containing surface complexes created on a microporous carbon by air and nitric acid treatment , 1993 .

[93]  J. Donnet,et al.  Surface groups on nitric acid oxidized carbon black samples determined by chemical and thermodesorption analyses , 1991 .

[94]  James A. Schwarz,et al.  Effect of HNO3 treatment on the surface acidity of activated carbons , 1990 .