Theoretical investigation of the ethylene dimer: Interaction energy and dipole moment

The interaction potential energy and the interaction‐induced dipole moment surfaces of the van der Waals C2H4‐C2H4 complex has been calculated for a broad range of intermolecular separations and configurations in the approximation of rigid interacting molecules. The calculations have been carried out using high‐level ab initio theory with the aug‐cc‐pVTZ basis set and within the framework of the analytical description of long‐range interactions between ethylene molecules. Binding energy for the most stable configuration of the C2H4‐C2H4 complex was calculated at the CCSD(T)/CBS level of theory. The harmonic fundamental vibrational frequencies for this complex were calculated at the MP2 level of theory. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2012

[1]  C. Roothaan,et al.  Electric Dipole Polarizability of Atoms by the Hartree—Fock Method. I. Theory for Closed‐Shell Systems , 1965 .

[2]  Ilya G. Kaplan,et al.  Intermolecular interactions : physical picture, computational methods, model potentials , 2006 .

[3]  Masuhiro Mikami,et al.  Effects of the higher electron correlation correction on the calculated intermolecular interaction energies of benzene and naphthalene dimers: comparison between MP2 and CCSD(T) calculations , 2000 .

[4]  A. Salam Molecular Quantum Electrodynamics: Long-Range Intermolecular Interactions , 2009 .

[5]  M. Hashimoto,et al.  The INDO and CNDO/2 SCF LCAO MO Calculation of Intermodular Forces and Their Pairwise Additivity , 1974 .

[6]  Hans-Joachim Werner,et al.  A simple and efficient CCSD(T)-F12 approximation. , 2007, The Journal of chemical physics.

[7]  K. Ruedenberg,et al.  Ab initio potential energy curve of F2. IV. Transition from the covalent to the van der Waals region: competition between multipolar and correlation forces. , 2009, The Journal of chemical physics.

[8]  A. Avoird,et al.  Lattice dynamics of the ethylene crystal with interaction potentials from ab initio calculations , 1978 .

[9]  W. Smith,et al.  Collision-induced absorption in the far infrared region in ethylene – rare gas mixtures , 1982 .

[10]  B. Linder,et al.  van der Waals induced dipoles , 1986 .

[11]  I. Pater,et al.  Seasonal variation of Titan's stratospheric ethylene (C2H4) observed ☆ , 2004 .

[12]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[13]  G. Maroulis A study of basis set and electron correlation effects in the ab initio calculation of the electric dipole hyperpolarizability of ethene (H2C=CH2) , 1992 .

[14]  Ashok Kumar,et al.  Dipole oscillator strength distributions, properties, and dispersion energies for ethylene, propene, and 1-butene , 2007 .

[15]  P. Karamanis,et al.  Electric quadrupole and hexadecapole moments for X2C=CX2, X = H, F, Cl, Br, and I , 2002 .

[16]  J. Cui Analysis of Titan's neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements in the Closed Source Neutral mode , 2009 .

[17]  Kazutoshi Tanabe,et al.  Nonbonding interaction potential of ethylene dimer obtained from ab initio molecular orbital calculations : prediction of a D2d structure , 1992 .

[18]  H. Kjaergaard,et al.  Explicitly correlated intermolecular distances and interaction energies of hydrogen bonded complexes. , 2009, The Journal of chemical physics.

[19]  入江 正浩,et al.  Bull. Chem. Soc. Jpn. への投稿のすすめ , 2011 .

[20]  Jonathan I. Lunine The atmospheres of Uranus and Neptune , 1993 .

[21]  P Hobza,et al.  Noncovalent interactions: a challenge for experiment and theory. , 2000, Chemical reviews.

[22]  D. Gruen,et al.  Infrared spectra of matrix isolated and solid ethylene. Formation of ethylene dimers , 1979 .

[23]  F. Mulder,et al.  The dimer interaction and lattice energy of ethylene and pyrazine in the multipole expansion; a comparison with atom-atom potentials , 1977 .

[24]  Roger E. Miller,et al.  Structure of the ethylene dimer from rotationally resolved near‐infrared spectroscopy: A quadruple hydrogen bond , 1995 .

[25]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[26]  J. Connerney,et al.  Latitudinal variation of Saturn photochemistry deduced from spatially-resolved ultraviolet spectra , 2006 .

[27]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[28]  D. M. Bishop,et al.  LONG-RANGE, COLLISION-INDUCED HYPERPOLARIZABILITIES OF ATOMS OR CENTROSYMMETRIC LINEAR MOLECULES : THEORY AND NUMERICAL RESULTS FOR PAIRS CONTAINING H OR HE , 1996 .

[29]  K. Gubbins,et al.  Determination of the quadrupole moment tensor of ethylene by collision-induced absorption , 1980 .

[30]  G. Orton,et al.  The composition of Titan's stratosphere from Cassini/CIRS mid-infrared spectra , 2007 .

[31]  Barry Robson,et al.  Intermolecular Interactions: from diatomics to biopolymers , 1978 .

[32]  R. A. King On the accuracy of spin-component-scaled perturbation theory (SCS-MP2) for the potential energy surface of the ethylene dimer , 2009 .

[33]  M. Hashimoto,et al.  CNDO/2 Calculation of the Valence Electron Contribution to the Intermodular Potential of Some Ground State Closed Shell Molecules , 1973 .

[34]  R. Beebe Jupiter: The Planet, Satellites and Magnetosphere , 2005 .

[35]  S. Tsuzuki,et al.  Intermolecular interaction potentials of methane and ethylene dimers calculated with the Møller–Plesset, coupled cluster and density functional methods , 1998 .

[36]  R. Ahlrichs,et al.  The structure of C2H4 clusters from theoretical interaction potentials and vibrational predissociation data , 1990 .

[37]  A. D. McLean,et al.  Theory of Molecular Polarizabilities , 1967 .

[38]  I. Misurkin,et al.  Intermolecular interactions in the ethylene dimer according to perturbation theory in the CNDO/2 approximation with a new formula for the resonance integral , 1984 .

[39]  A. Avoird,et al.  Dynamical and optical properties of the ethylene crystal: Self‐consistent phonon calculations using an ‘‘ab initio’’ intermolecular potential , 1981 .

[40]  Trygve Helgaker,et al.  Basis-set convergence of the energy in molecular Hartree–Fock calculations , 1999 .

[41]  Frederick R Manby,et al.  General orbital invariant MP2-F12 theory. , 2007, The Journal of chemical physics.

[42]  G. Herzberg,et al.  Infrared and Raman spectra of polyatomic molecules , 1946 .

[43]  J. Duncan,et al.  Ground state rotational constants of H2CCD2 and C2D4 and geometry of ethylene , 1972 .

[44]  J. Lennard-jones,et al.  Molecular Spectra and Molecular Structure , 1929, Nature.

[45]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[46]  George Maroulis,et al.  A systematic study of basis set, electron correlation, and geometry effects on the electric multipole moments, polarizability, and hyperpolarizability of HCl , 1998 .

[47]  Masuhiro Mikami,et al.  NEW MEDIUM-SIZE BASIS SETS TO EVALUATE THE DISPERSION INTERACTION OF HYDROCARBON MOLECULES , 1998 .

[48]  P. Wormer,et al.  Ab initio valence‐bond calculations of the van der Waals interactions between π systems: The ethylene dimer , 1975 .

[49]  J. Oomens,et al.  IR excitation of ethylene molecules and clusters embedded in 4He droplets , 2001 .

[50]  Anthony J. Russell,et al.  An ab initio study of vibrational corrections to the electrical properties of ethylene , 2000 .

[51]  Kazunari Suzuki,et al.  Ab initio intermolecular potential of the ethylene dimer , 1982 .

[52]  Athena Coustenis,et al.  TITAN: EXPLORING AN EARTHLIKE WORLD , 2008 .

[53]  R. C. Cohen,et al.  Analysis of collision induced far infrared spectrum of ethylene , 1987 .

[54]  Bernard Pullman,et al.  Intermolecular interactions, from diatomics to biopolymers , 1978 .

[55]  I. Alberts,et al.  Stationary points on the potential energy surfaces of (C2H2)2, (C2H2)3, and (C2H4)2 , 1988 .

[56]  J. Doussin,et al.  Experimental and theoretical study of hydrocarbon photochemistry applied to Titan stratosphere , 2006 .

[57]  Jan M. L. Martin Ab initio total atomization energies of small molecules — towards the basis set limit , 1996 .

[58]  Gregory P Smith,et al.  Local sensitivity analysis for observed hydrocarbons in a Jupiter photochemistry model , 2006 .

[59]  R. Fantoni,et al.  Van der waals modes and rotational fine structure in C2H4 dimers , 1986 .

[60]  P. Millié,et al.  Intermolecular interactions: basis set and intramolecular correlation effects on semiempirical methods. Application to (C2H2)2, (C2H2)3 and (C2H4)2 , 1994 .

[61]  P. Wormer,et al.  Quantum theoretical calculations of van der Waals interactions between molecules. Anisotropic long range interactions , 1977 .

[62]  S. Grimme,et al.  Is spin-component scaled second-order Møller-Plesset perturbation theory an appropriate method for the study of noncovalent interactions in molecules? , 2007, The journal of physical chemistry. A.