Bypassing Combinatorial Protections: Polynomial-Time Algorithms for Single-Peaked Electorates

For many election systems, bribery (and related) attacks have been shown NP-hard using constructions on combinatorially rich structures such as partitions and covers. It is important to learn how robust these hardness protection results are, in order to find whether they can be relied on in practice. This paper shows that for voters who follow the most central political-science model of electorates—single-peaked preferences—those protections vanish. By using single-peaked preferences to simplify combinatorial covering challenges, we show that NP-hard bribery problems—including those for Kemeny and Llull elections—fall to polynomial time. By using single-peaked preferences to simplify combinatorial partition challenges, we show that NP-hard partition-of-voters problems fall to polynomial time. We furthermore show that for single-peaked electorates, the winner problems for Dodgson and Kemeny elections, though Θp2-complete in the general case, fall to polynomial time. And we completely classify the complexity of weighted coalition manipulation for scoring protocols in single-peaked electorates.

[1]  Jörg Rothe,et al.  Exact analysis of Dodgson elections: Lewis Carroll's 1876 voting system is complete for parallel access to NP , 1997, JACM.

[2]  T. Schwartz Rationality and the Myth of the Maximum , 1972 .

[3]  Piotr Faliszewski,et al.  The Complexity of Bribery in Elections , 2006, AAAI.

[4]  Piotr Faliszewski,et al.  Llull and Copeland Voting Computationally Resist Bribery and Constructive Control , 2009, J. Artif. Intell. Res..

[5]  Lane A. Hemachandra,et al.  The strong exponential hierarchy collapses , 1989 .

[6]  Jérôme Lang,et al.  Voting procedures with incomplete preferences , 2005 .

[7]  Eithan Ephrati,et al.  A heuristic technique for multi‐agent planning , 1997, Annals of Mathematics and Artificial Intelligence.

[8]  Michael A. Trick,et al.  Stable matching with preferences derived from a psychological model , 1986 .

[9]  Lane A. Hemaspaandra,et al.  SIGACT News Complexity Theory Column 76: an atypical survey of typical-case heuristic algorithms , 2012, SIGA.

[10]  Piotr Faliszewski,et al.  The complexity of manipulative attacks in nearly single-peaked electorates , 2011, TARK XIII.

[11]  John J. Bartholdi,et al.  Single transferable vote resists strategic voting , 2015 .

[12]  M. Hinich,et al.  An Expository Development of a Mathematical Model of the Electoral Process , 1970, American Political Science Review.

[13]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[14]  P. Fishburn Condorcet Social Choice Functions , 1977 .

[15]  H. Young Extending Condorcet's rule , 1977 .

[16]  Noam Nisan,et al.  A Quantitative Version of the Gibbard-Satterthwaite Theorem for Three Alternatives , 2011, SIAM J. Comput..

[17]  P. B. Simpson On Defining Areas of Voter Choice: Professor Tullock on Stable Voting , 1969 .

[18]  Michael A. Trick,et al.  How hard is it to control an election? Math , 1992 .

[19]  Keith Krehbiel,et al.  Pivotal Politics: A Theory of U.S. Lawmaking , 1998 .

[20]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[21]  M. Trick,et al.  The computational difficulty of manipulating an election , 1989 .

[22]  Vincent Conitzer,et al.  When are elections with few candidates hard to manipulate? , 2007, J. ACM.

[23]  Toby Walsh,et al.  Uncertainty in Preference Elicitation and Aggregation , 2007, AAAI.

[24]  Piotr Faliszewski,et al.  Nonuniform Bribery , 2007, AAMAS.

[25]  Jean-Claude Falmagne,et al.  A Polynomial Time Algorithm for Unidimensional Unfolding Representations , 1994, J. Algorithms.

[26]  Steggall On Methods of Election , 1895, Proceedings of the Edinburgh Mathematical Society.

[27]  Eric Horvitz,et al.  Social Choice Theory and Recommender Systems: Analysis of the Axiomatic Foundations of Collaborative Filtering , 2000, AAAI/IAAI.

[28]  John R. Wright,et al.  Voting cycles and the structure of individual preferences , 1987 .

[29]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[30]  E. Schickler Pivotal Politics: A Theory of U.S. Lawmaking . By Keith Krehbiel. Chicago and London: University of Chicago Press, 1998. 258p. $50.00 cloth, $17.00 paper. , 2000 .

[31]  Gábor Erdélyi,et al.  Control Complexity in Fallback Voting , 2010, CATS.

[32]  Piotr Faliszewski,et al.  Using complexity to protect elections , 2010, Commun. ACM.

[33]  John G. Kemeny,et al.  Mathematical models in the social sciences , 1964 .

[34]  E. Ephrati A Heuristic Technique for Multiagent PlanningEithan , 1997 .

[35]  Jörg Rothe,et al.  Exact Complexity of the Winner Problem for Young Elections , 2001, Theory of Computing Systems.

[36]  Olivier Spanjaard,et al.  Bounded Single-Peaked Width and Proportional Representation , 2012, ECAI.

[37]  Geoffrey Pritchard,et al.  Approximability of Dodgson’s rule , 2008, Soc. Choice Welf..

[38]  John G. Kemeny,et al.  Mathematical models in the social sciences , 1964 .

[39]  Jörg Rothe,et al.  Anyone but him: The complexity of precluding an alternative , 2005, Artif. Intell..

[40]  D. Black On the Rationale of Group Decision-making , 1948, Journal of Political Economy.

[41]  Edith Hemaspaandra,et al.  Computational Politics: Electoral Systems , 2000, MFCS.

[42]  Gerald H. Kramer,et al.  A dynamical model of political equilibrium , 1977 .

[43]  Christos H. Papadimitriou,et al.  Two remarks on the power of counting , 1983, Theoretical Computer Science.

[44]  Jörg Rothe,et al.  The complexity of voter partition in Bucklin and fallback voting: solving three open problems , 2011, AAMAS.

[45]  Sandip Sen,et al.  Voting for movies: the anatomy of a recommender system , 1999, AGENTS '99.

[46]  Piotr Faliszewski,et al.  The shield that never was: societies with single-peaked preferences are more open to manipulation and control , 2009, TARK '09.

[47]  Salvador Barberà,et al.  An introduction to strategy-proof social choice functions , 2001, Soc. Choice Welf..

[48]  M. Satterthwaite Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions , 1975 .

[49]  Emerson M. S. Niou A note on Nanson's rule , 1987 .

[50]  Curtis Menton,et al.  Normalized Range Voting Broadly Resists Control , 2010, Theory of Computing Systems.

[51]  Jörg Rothe,et al.  Hybrid Elections Broaden Complexity‐Theoretic Resistance to Control , 2006, IJCAI.

[52]  Jörg Rothe,et al.  Sincere‐Strategy Preference‐Based Approval Voting Fully Resists Constructive Control and Broadly Resists Destructive Control , 2008, Math. Log. Q..

[53]  John Duggan,et al.  Strategic manipulability without resoluteness or shared beliefs: Gibbard-Satterthwaite generalized , 2000, Soc. Choice Welf..

[54]  Jérôme Lang,et al.  Single-peaked consistency and its complexity , 2008, ECAI.

[55]  Edith Hemaspaandra,et al.  Dichotomy for voting systems , 2005, J. Comput. Syst. Sci..

[56]  G. Thompson,et al.  The Theory of Committees and Elections. , 1959 .

[57]  Ariel D. Procaccia,et al.  Junta Distributions and the Average-Case Complexity of Manipulating Elections , 2007, J. Artif. Intell. Res..

[58]  Vincent Conitzer Eliciting single-peaked preferences using comparison queries , 2007, AAMAS '07.

[59]  Nicolas de Condorcet Essai Sur L'Application de L'Analyse a la Probabilite Des Decisions Rendues a la Pluralite Des Voix , 2009 .

[60]  Edith Hemaspaandra,et al.  The complexity of Kemeny elections , 2005, Theor. Comput. Sci..

[61]  S. Shapiro,et al.  Mathematics without Numbers , 1993 .

[62]  Piotr Faliszewski,et al.  Copeland voting: ties matter , 2008, AAMAS.

[63]  Piotr Faliszewski,et al.  How Hard Is Bribery in Elections? , 2006, J. Artif. Intell. Res..

[64]  Friedrich Pukelsheim,et al.  The electoral writings of Ramon Llull , 2001 .

[65]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[66]  Noam Nisan,et al.  Elections Can be Manipulated Often , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.