Geometric Information Criterion for Model Selection

In building a 3-D model of the environment from image and sensor data, one must fit to the data an appropriate class of models, which can be regarded as a parametrized manifold, or geometric model, defined in the data space. In this paper, we present a statistical framework for detecting degeneracies of a geometric model by evaluating its predictive capability in terms of the expected residual and derive the geometric AIC. We show that it allows us to detect singularities in a structure-from-motion analysis without introducing any empirically adjustable thresholds. We illustrate our approach by simulation examples. We also discuss the application potential of this theory for a wide range of computer vision and robotics problems.

[1]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[2]  H. Akaike Fitting autoregressive models for prediction , 1969 .

[3]  H. Akaike A new look at the statistical model identification , 1974 .

[4]  M. Stone An Asymptotic Equivalence of Choice of Model by Cross‐Validation and Akaike's Criterion , 1977 .

[5]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[6]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[7]  R. Shibata An optimal selection of regression variables , 1981 .

[8]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[9]  Thomas S. Huang,et al.  Uniqueness and Estimation of Three-Dimensional Motion Parameters of Rigid Objects with Curved Surfaces , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Jorma Rissanen,et al.  Universal coding, information, prediction, and estimation , 1984, IEEE Trans. Inf. Theory.

[11]  H C Longuet-Higgins,et al.  The visual ambiguity of a moving plane , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[12]  S. Maybank,et al.  The angular Velocity associated with the optical flowfield arising from motion through a rigid environment , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Gilad Adiv,et al.  Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Allen M. Waxman,et al.  Closed from solutions to image flow equations for planar surfaces in motion , 1986, Comput. Vis. Graph. Image Process..

[15]  Gérard G. Medioni,et al.  Robust Estimation of Three-Dimensional Motion Parameters from a Sequence of Image Frames Using Regularization , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  H. C. Longuet-Higgins The reconstruction of a plane surface from two perspective projections , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[17]  Kenichi Kanatani,et al.  Structure and motion from optical flow under perspective projection , 1986, Comput. Vis. Graph. Image Process..

[18]  Andrew R. Barron,et al.  Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.

[19]  S. Negahdaripour Closed-form relationship between the two interpretations of a moving plane , 1990 .

[20]  Shahriar Negahdaripour,et al.  Multiple Interpretations of the Shape and Motion of Objects from Two Perspective Images , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Narendra Ahuja,et al.  Motion and structure from point correspondences with error estimation: planar surfaces , 1991, IEEE Trans. Signal Process..

[22]  Shigeichi Hirasawa,et al.  A class of distortionless codes designed by Bayes decision theory , 1991, IEEE Trans. Inf. Theory.

[23]  Andrew R. Barron,et al.  Minimum complexity density estimation , 1991, IEEE Trans. Inf. Theory.

[24]  Philip H. S. Torr,et al.  Statistical detection of independent movement from a moving camera , 1993, Image Vis. Comput..

[25]  Thomas S. Huang,et al.  Theory of Reconstruction from Image Motion , 1992 .

[26]  Thomas S. Huang,et al.  Motion and Structure from Image Sequences , 1992 .

[27]  A. Barron,et al.  Jeffreys' prior is asymptotically least favorable under entropy risk , 1994 .

[28]  Rama Chellappa,et al.  Statistical Analysis of Inherent Ambiguities in Recovering 3-D Motion from a Noisy Flow Field , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Ping Zhang On the Distributional Properties of Model Selection Criteria , 1992 .

[30]  Y. Aloimonos Active Perception , 1993 .

[31]  Narendra Ahuja,et al.  Optimal Motion and Structure Estimation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Toshio Endoh,et al.  Un-Biased Linear Algorithm for Recovering Three-Dimensional Motion from Optical Flow , 1993 .

[33]  Kenichi Kanatani,et al.  Geometric computation for machine vision , 1993 .

[34]  Toshio Endoh,et al.  Estimation of 3-D Motion from Optical Flow with Unbiased Objective Function , 1994 .

[35]  Kenichi Kanatani,et al.  Renormalization for motion analysis : Statistically optimal algorithm , 1994 .

[36]  Kenichi Kanatani,et al.  Direct Reconstruction of Planar Surfaces by Stereo Vision , 1994, MVA.

[37]  Kim L. Boyer,et al.  The Robust Sequential Estimator: A General Approach and its Application to Surface Organization in Range Data , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Kenichi Kanatani,et al.  Analysis of 3-D Rotation Fitting , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Toshio Endoh,et al.  A Superior Estimator to the Maximum Likelihood Estimator on 3-D Motion Estimation from Noisy Optical Flow (Special Issue on Computer Vision) , 1994 .

[40]  Geoff A. W. West,et al.  Nonparametric Segmentation of Curves into Various Representations , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Kenichi Kanatani,et al.  3-D Motion Analysis of a Planar Surface by Renormalization , 1995, IEICE Trans. Inf. Syst..

[42]  S. P. Mudur,et al.  Three-dimensional computer vision: a geometric viewpoint , 1993 .

[43]  Charles V. Stewart,et al.  MINPRAN: A New Robust Estimator for Computer Vision , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Hagit Hel-Or,et al.  Symmetry as a Continuous Feature , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Naoya Ohta,et al.  Optimal Structure-from-Motion Algorithm for Optical Flow , 1995, IEICE Trans. Inf. Syst..

[46]  Kenichi Kanatani,et al.  Automatic Recognition of Regular Figures by Geometric AIC , 1998, MVA.

[47]  Minoru Asada,et al.  MDL-Based Segmentation and Motion Modeling in a Long Image Sequence of Scene with Multiple Independently Moving Objects , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  K. Kanatani Automatic Singularity Test for Motion Analysis by an Information Criterion , 1995, ECCV.

[49]  Kenichi Kanatani,et al.  Comments on "Symmetry as a Continuous Feature" , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Kenichi Kanatani Comments on "Nonparametric Segmentation of Curves Into Various Representations" , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.

[52]  C. H. Oh,et al.  Some comments on , 1998 .

[53]  Yvan G. Leclerc,et al.  Constructing simple stable descriptions for image partitioning , 1989, International Journal of Computer Vision.

[54]  Allan D. Jepson,et al.  Subspace methods for recovering rigid motion I: Algorithm and implementation , 2004, International Journal of Computer Vision.

[55]  Azriel Rosenfeld,et al.  Robust regression methods for computer vision: A review , 1991, International Journal of Computer Vision.

[56]  Olivier D. Faugeras,et al.  Motion from point matches: Multiplicity of solutions , 2004, International Journal of Computer Vision.

[57]  Berthold K. P. Horn Motion fields are hardly ever ambiguous , 1988, International Journal of Computer Vision.

[58]  Berthold K. P. Horn Relative orientation , 1987, International Journal of Computer Vision.

[59]  Patrick Bouthemy,et al.  Computation and analysis of image motion: A synopsis of current problems and methods , 1996, International Journal of Computer Vision.

[60]  Shahriar Negahdaripour Critical surface pairs and triplets , 2004, International Journal of Computer Vision.

[61]  Kenichi Kanatani,et al.  3-D interpretation of optical flow by renormalization , 1993, International Journal of Computer Vision.

[62]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[63]  金谷 健一 Statistical optimization for geometric computation : theory and practice , 2005 .