Entrainment to the CIECAM02 and CIELAB colour appearance models in the human cortex

[1]  Frank Tong,et al.  Foundations of Vision , 2018 .

[2]  William D. Marslen-Wilson,et al.  Tonotopic representation of loudness in the human cortex , 2017, Hearing Research.

[3]  William D. Marslen-Wilson,et al.  Representation of Instantaneous and Short-Term Loudness in the Human Cortex , 2016, Front. Neurosci..

[4]  Kathy T. Mullen,et al.  Color in the Cortex , 2016 .

[5]  J. Kremers,et al.  The Retinal Processing of Photoreceptor Signals , 2016 .

[6]  Barry B. Lee,et al.  Cone opponency: An efficient way of transmitting chromatic information. , 2016 .

[7]  Roy D. Patterson,et al.  Tracking cortical entrainment in neural activity: auditory processes in human temporal cortex , 2015, Front. Comput. Neurosci..

[8]  J. Simon,et al.  Cortical entrainment to continuous speech: functional roles and interpretations , 2014, Front. Hum. Neurosci..

[9]  J. Kremers,et al.  Temporal characteristics of L- and M-cone isolating steady-state electroretinograms. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  Jonathan Z. Simon,et al.  Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine structure , 2014, NeuroImage.

[11]  Barry B. Lee,et al.  Simultaneous chromatic and luminance human electroretinogram responses , 2012, The Journal of physiology.

[12]  Rufin VanRullen,et al.  Perceptual Echoes at 10 Hz in the Human Brain , 2012, Current Biology.

[13]  R. Shapley,et al.  Color in the Cortex: single- and double-opponent cells , 2011, Vision Research.

[14]  Jonathan Winawer,et al.  Imaging retinotopic maps in the human brain , 2011, Vision Research.

[15]  Olaf Hauk,et al.  Comparison of noise-normalized minimum norm estimates for MEG analysis using multiple resolution metrics , 2011, NeuroImage.

[16]  Bevil R. Conway,et al.  Advances in Color Science: From Retina to Behavior , 2010, The Journal of Neuroscience.

[17]  A. R. Rodrigues,et al.  Flicker ERGs representing chromaticity and luminance signals. , 2010, Investigative ophthalmology & visual science.

[18]  Erik Reinhard,et al.  A neurophysiology-inspired steady-state color appearance model. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  A. Stockman,et al.  The S-cone contribution to luminance depends on the M- and L-cone adaptation levels: silent surrounds? , 2009, Journal of vision.

[20]  Karl R Gegenfurtner,et al.  Geometry in Nature , 1993 .

[21]  J. Kremers,et al.  Electroretinographic responses that may reflect activity of parvo- and magnocellular post-receptoral visual pathways. , 2008, Journal of vision.

[22]  R. Shapley,et al.  The Orientation Selectivity of Color-Responsive Neurons in Macaque V1 , 2008, The Journal of Neuroscience.

[23]  Denis G. Pelli,et al.  ECVP '07 Abstracts , 2007, Perception.

[24]  Barak A. Pearlmutter,et al.  The VESPA: A method for the rapid estimation of a visual evoked potential , 2006, NeuroImage.

[25]  Shogo Tanaka,et al.  Characteristics of alpha wave response to flicker stimuli with color alternation , 2006 .

[26]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[27]  S. Taulu,et al.  Applications of the signal space separation method , 2005, IEEE Transactions on Signal Processing.

[28]  Bernd Lütkenhöner,et al.  Figures of merit to compare distributed linear inverse solutions , 1996, Brain Topography.

[29]  R. Shapley,et al.  Cone inputs in macaque primary visual cortex. , 2004, Journal of Neurophysiology.

[30]  H. J. Leebeek,et al.  Phase shift of alternating coloured stimuli , 2004, Documenta Ophthalmologica.

[31]  Frederick A A Kingdom,et al.  Color brings relief to human vision , 2003, Nature Neuroscience.

[32]  T. Sejnowski,et al.  Representation of Color Stimuli in Awake Macaque Primary Visual Cortex , 2003, Neuron.

[33]  M. Luo,et al.  CMC 2000 Chromatic Adaptation Transform: CMCCAT2000 , 2002 .

[34]  A. B. Bonds,et al.  Are primate lateral geniculate nucleus (LGN) cells really sensitive to orientation or direction? , 2002, Visual Neuroscience.

[35]  Ming Cheng,et al.  Multiple color stimulus induced steady state visual evoked potentials , 2001, 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[36]  J. B. Levitt,et al.  Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys. , 2001, Journal of neurophysiology.

[37]  Bevil R. Conway,et al.  Spatial Structure of Cone Inputs to Color Cells in Alert Macaque Primary Visual Cortex (V-1) , 2001, The Journal of Neuroscience.

[38]  C. Herrmann Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena , 2001, Experimental Brain Research.

[39]  R. Shapley,et al.  The spatial transformation of color in the primary visual cortex of the macaque monkey , 2001, Nature Neuroscience.

[40]  Alan C. Evans,et al.  MRI Atlas of the Human Cerebellum , 2000 .

[41]  A. Stockman,et al.  The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype , 2000, Vision Research.

[42]  A. Stockman,et al.  The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches , 1999, Vision Research.

[43]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[44]  Michael H. Brill,et al.  Color appearance models , 1998 .

[45]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[46]  Robert W. G. Hunt,et al.  Testing colour appearance models using corresponding‐colour and magnitude‐estimation data sets , 1998 .

[47]  S. Gonzalez-Andino,et al.  A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem , 1998, IEEE Transactions on Biomedical Engineering.

[48]  S. Zeki,et al.  The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. , 1997, Brain : a journal of neurology.

[49]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[50]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[51]  Barry B. Lee,et al.  Horizontal Cells of the Primate Retina: Cone Specificity Without Spectral Opponency , 1996, Science.

[52]  A. Leventhal,et al.  Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  J. Pokorny,et al.  Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights. , 1992, The Journal of physiology.

[54]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[55]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R. Hunt,et al.  A colour‐appearance transform for the CIE 1931 standard colorimetric observer , 1985 .

[57]  D. G. Albrecht,et al.  Spatial mapping of monkey VI cells with pure color and luminance stimuli , 1984, Vision Research.

[58]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[59]  Elaine J. Weyuker,et al.  Computability, complexity, and languages - fundamentals of theoretical computer science , 2014, Computer science and applied mathematics.

[60]  S. Schein,et al.  Protan‐like spectral sensitivity of foveal Y ganglion cells of the retina of macaque monkeys. , 1980, The Journal of physiology.

[61]  R. M. Boynton,et al.  Chromaticity diagram showing cone excitation by stimuli of equal luminance. , 1979, Journal of the Optical Society of America.

[62]  P. Gouras,et al.  Functional properties of ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[63]  R. Bone,et al.  Comparison of macular pigment densities in human eyes. , 1971, Vision research.

[64]  P. Gouras Identification of cone mechanisms in monkey ganglion cells , 1968, The Journal of physiology.

[65]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[66]  D. Regan Some characteristics of average steady-state and transient responses evoked by modulated light. , 1966, Electroencephalography and clinical neurophysiology.

[67]  D. B. Judd,et al.  Basic correlates of the visual stimulus , 1951 .

[68]  H. Ives XII. Studies in the photometry of lights of different colours , 1912 .